Home
Class 12
MATHS
If f(x)+2f((1)/(x))=3x,x ne 0, and S={x ...

If `f(x)+2f((1)/(x))=3x,x ne 0, and S={x in R: f(x)=f(-x)},` then S

A

contains exactly one element

B

contains exactly two elements.

C

contains more than two elements

D

is an empty set.

Text Solution

Verified by Experts

The correct Answer is:
C

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)+2f(1/x)=3x , x!=0, and S={x in R :f(x)=f(-x)} ; then S: (1) is an empty set. (2) contains exactly one element. (3) contains exactly two elements. (4) contains more than two elements

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)-3f((1)/(x))=2x+3(x ne 0) then f(3) is equal to

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

If h(x)= f(f(x)) for all x in R, and f(x)= x^3 + 3x+2 , then h(0) equals

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):} , then f(x) is