Home
Class 12
MATHS
The value of cotsum(n=1)^(19)cot^(-1)(1+...

The value of `cotsum_(n=1)^(19)cot^(-1)(1+sum_(p=1)^(n)2p)` is equal to (a) `(21)/(19)` (b) `(19)/(21)` (c) `-(19)/(21)` (d) `-(21)/(19)`

A

`19/21`

B

`21/19`

C

`22/23`

D

`23/22`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \sum_{n=1}^{19} \cot^{-1}\left(1 + \sum_{p=1}^{n} 2p\right) \] ### Step 1: Simplify the inner summation First, we simplify the inner summation: \[ \sum_{p=1}^{n} 2p = 2 \sum_{p=1}^{n} p = 2 \cdot \frac{n(n+1)}{2} = n(n+1) \] This means we can rewrite the expression as: \[ \sum_{n=1}^{19} \cot^{-1}(1 + n(n+1)) \] ### Step 2: Rewrite the argument of cotangent inverse Now we can simplify the argument of the cotangent inverse: \[ 1 + n(n+1) = n^2 + n + 1 \] Thus, our expression becomes: \[ \sum_{n=1}^{19} \cot^{-1}(n^2 + n + 1) \] ### Step 3: Use the cotangent difference identity We know the identity: \[ \cot^{-1}(x) - \cot^{-1}(y) = \cot^{-1}\left(\frac{y - x}{1 + xy}\right) \] We can express \(\cot^{-1}(n^2 + n + 1)\) in terms of a difference of cotangent inverses. We can observe that: \[ \cot^{-1}(n^2 + n + 1) = \tan^{-1}\left(\frac{1}{n^2 + n + 1}\right) \] ### Step 4: Evaluate the sum Now we can evaluate the sum: \[ \sum_{n=1}^{19} \left(\tan^{-1}(n+1) - \tan^{-1}(n)\right) \] This is a telescoping series, where most terms will cancel out: \[ = \tan^{-1}(20) - \tan^{-1}(1) \] ### Step 5: Use the tangent difference identity Using the identity for the difference of arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] We can substitute \(a = 20\) and \(b = 1\): \[ \tan^{-1}(20) - \tan^{-1}(1) = \tan^{-1}\left(\frac{20 - 1}{1 + 20 \cdot 1}\right) = \tan^{-1}\left(\frac{19}{21}\right) \] ### Step 6: Find cotangent of the result Now we take the cotangent of the result: \[ \cot\left(\tan^{-1}\left(\frac{19}{21}\right)\right) = \frac{21}{19} \] ### Final Answer Thus, the value of the original expression is: \[ \frac{21}{19} \] So the correct option is **(a) \(\frac{21}{19}\)**. ---

To solve the given problem, we need to evaluate the expression: \[ \sum_{n=1}^{19} \cot^{-1}\left(1 + \sum_{p=1}^{n} 2p\right) \] ### Step 1: Simplify the inner summation ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The value of cot sum_(n=1)^(19)(cot^(-1)(1+sum_(p=1)^(n)2p)) is equal to (a) (21)/(19) (b) (19)/(21) (c) -(19)/(21) (d) -(21)/(19)

5/8+3/4-7/(12) is equal to: (a) (15)/(24) (b) (17)/(24) (c) (19)/(24) (d) (21)/(24)

("lim")_(x->oo)sum_(x=1)^(20)cos^(2n)(x-10) is equal to (a) 0 (b) 1 (c) 19 (d) 20

The value of tan(cos^(-1)(3/5)+tan^(-1)(1/4)) is (a) (19)/8 (b) 8/(19) (c) (19)/(12) (d) 3/4

The value of sum_(r=0)^(10)(r)^(20)C_r is equal to: a. 20(2^(18)+^(19)C_(10)) b. 10(2^(18)+^(19)C_(10)) c. 20(2^(18)+^(19)C_(11)) d. 10(2^(18)+^(19)C_(11))

{(1/3)^(-3)-(1/2)^(-3)}-:(1/4)^(-3) = (a) (19)/(64) (b) (64)/(19) (c) (27)/(16) (d) (-19)/(64)

Evaluate : (-1)-(-19)

The sum sum _ ( k = 1 ) ^ ( 20 ) k ( 1 ) / ( 2 ^ k ) is equal to l - (11) /(m ^ ( 19 )) . The value of ( l + m ) is ______ .

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

If A=[(2,3),(5,-2)] then 19A^-1 is equal to (A) A\' (B) 2A (C) 1/2 A (D) A