Home
Class 12
MATHS
The value 'x' satisfying the equation, 4...

The value 'x' satisfying the equation, `4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4^{\log_{9}3} + 9^{\log_{2}4} = 10^{\log_{x}83} \), we will follow these steps: ### Step 1: Rewrite the bases We can rewrite \( 4 \) and \( 9 \) in terms of powers of \( 2 \) and \( 3 \): - \( 4 = 2^2 \) - \( 9 = 3^2 \) Thus, we can rewrite the equation as: \[ (2^2)^{\log_{9}3} + (3^2)^{\log_{2}4} = 10^{\log_{x}83} \] ### Step 2: Apply the power rule of logarithms Using the power rule of exponents, we can simplify the left-hand side: \[ 2^{2 \cdot \log_{9}3} + 3^{2 \cdot \log_{2}4} = 10^{\log_{x}83} \] ### Step 3: Simplify the logarithmic expressions Using the change of base formula for logarithms: \[ \log_{9}3 = \frac{\log_{3}3}{\log_{3}9} = \frac{1}{2} \quad \text{(since } \log_{3}9 = 2\text{)} \] \[ \log_{2}4 = \frac{\log_{2}4}{\log_{2}2} = 2 \quad \text{(since } \log_{2}2 = 1\text{)} \] Substituting these values back into the equation: \[ 2^{2 \cdot \frac{1}{2}} + 3^{2 \cdot 2} = 10^{\log_{x}83} \] This simplifies to: \[ 2^1 + 3^4 = 10^{\log_{x}83} \] ### Step 4: Calculate the left-hand side Calculating the left-hand side: \[ 2 + 81 = 10^{\log_{x}83} \] Thus, we have: \[ 83 = 10^{\log_{x}83} \] ### Step 5: Take logarithm on both sides Taking logarithm base \( 10 \) on both sides: \[ \log_{10}83 = \log_{10}(10^{\log_{x}83}) \] Using the property of logarithms: \[ \log_{10}83 = \log_{x}83 \cdot \log_{10}10 \] Since \( \log_{10}10 = 1 \), we have: \[ \log_{10}83 = \log_{x}83 \] ### Step 6: Solve for \( x \) From the equality of logarithms, we can deduce that: \[ x = 10 \] Thus, the value of \( x \) satisfying the equation is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

The product of all values of x satisfying the equations log_(3)a-log_(x)a=log_(x//3)a is :

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9

The value of x satisfying the equation root(3)(5)^(log_(5)5^(log_(5)5^(log_(5)5^(log_(5)((x)/(2)) = 3, is

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x))=27

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

98. The value of x satisfying the equation ((sqrtpi)^(log_pi(x))).((sqrtpi)^(log_(pi^2)(x))).((sqrtpi).^(log_(pi^4)(x))).((sqrtpi)^(log_(pi^8)(x)))...oo=3 is equal to

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

RESONANCE ENGLISH-DPP-QUESTION
  1. Which of the following when simplified reduces to unity? (log)(3/2)(l...

    Text Solution

    |

  2. If log(6)log(2)[sqrt(4x+2)+2sqrtx]=0thenx=.

    Text Solution

    |

  3. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  4. If x=prod(n=1)^(2000)n, then the value of the expression, (1)/((1)/(l...

    Text Solution

    |

  5. Simplify :""^(3)sqrt(5^((1)/(log(7)5))+(1)/(sqrt(-log(10)(0.1))))

    Text Solution

    |

  6. Solved the following inequations {:((i), (x-5)(x+9)(x-8)lt0,(ii),x^(...

    Text Solution

    |

  7. If m,n in N and m=(n^2-n-35)/(n-4), then find the value of m.

    Text Solution

    |

  8. If x^3 + y^3 + 1 = 3xy, where x!= y determine the value of x + y + 1.

    Text Solution

    |

  9. Number of integers whose characteristic of logarithms to the base 10 i...

    Text Solution

    |

  10. If mantissa of lagarithm of 719.3 to the base 10 is 0.8569 then mantis...

    Text Solution

    |

  11. Number of digits in integral part of 60^(12)+60^(-12)-60^(-15)is ("giv...

    Text Solution

    |

  12. Find logarithm of the following values: 500

    Text Solution

    |

  13. Find antilog of the following values: 0. 0125

    Text Solution

    |

  14. (i) Find antilog of 0.4 to the base 32. (ii) Find antilog of 2 to t...

    Text Solution

    |

  15. Given log(10)2=0.3010."find"log(25)200 by using log table

    Text Solution

    |

  16. Find volume of a cuboid whose edges are 58.73cm,2.631 cm and 0.3798cm ...

    Text Solution

    |

  17. Find the value of (23.17)^((1)/(5.76)) using log table.

    Text Solution

    |

  18. Find number of digits in 875^(16), given log2=.3010300,log7=.8450980.

    Text Solution

    |

  19. If (x^(2)+x)+iy and (-x-1)-i(x+2y) are conjugate of each other, then r...

    Text Solution

    |

  20. ((4i^(3)-i)/(2i+1))^(2) can be expressed in a + ib as

    Text Solution

    |