Home
Class 12
MATHS
If x=prod(n=1)^(2000)n, then the value o...

If `x=prod_(n=1)^(2000)n,` then the value of the expression, `(1)/((1)/(log_(2)x)+(1)/(log_(3)x)+.........+(1)/(log_(2000)x))is..........`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{1}{\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \ldots + \frac{1}{\log_{2000} x}} \] where \( x = \prod_{n=1}^{2000} n \). ### Step 1: Understanding \( x \) We know that \( x \) is the product of the first 2000 natural numbers, which is equal to \( 2000! \). ### Step 2: Expressing the logarithm Using the change of base formula for logarithms, we can express \( \log_b a \) as \( \frac{\log a}{\log b} \). Thus, we can rewrite each term in the denominator: \[ \log_b x = \log_b (2000!) = \frac{\log (2000!)}{\log b} \] ### Step 3: Rewriting the denominator Now substituting this into our expression, we have: \[ \frac{1}{\frac{1}{\log_2 (2000!)} + \frac{1}{\log_3 (2000!)} + \ldots + \frac{1}{\log_{2000} (2000!)}} \] This becomes: \[ \frac{1}{\frac{\log 2}{\log (2000!)} + \frac{\log 3}{\log (2000!)} + \ldots + \frac{\log 2000}{\log (2000!)}} \] ### Step 4: Factoring out \( \log (2000!) \) We can factor out \( \frac{1}{\log (2000!)} \): \[ = \frac{1}{\frac{1}{\log (2000!)} \left( \log 2 + \log 3 + \ldots + \log 2000 \right)} \] ### Step 5: Simplifying the expression This simplifies to: \[ \frac{\log (2000!)}{\log 2 + \log 3 + \ldots + \log 2000} \] Using the property of logarithms that states \( \log a + \log b = \log (a \cdot b) \), we can rewrite the denominator: \[ \log 2 + \log 3 + \ldots + \log 2000 = \log (2 \cdot 3 \cdot \ldots \cdot 2000) = \log (2000!) \] ### Step 6: Final simplification Now substituting this back into our expression gives: \[ \frac{\log (2000!)}{\log (2000!)} = 1 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

IF x=198! then value of the expression 1/(log_2x)+1/(log_3x)+...+1/(log_198 x) equals

Solve log_((1)/(3))(x-1)>log_((1)/(3))4 .

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

If 0 lt a lt 1 , then the solution set of the inequation (1+(log_(a)x)^(2))/(1+(log_(a)x)) gt1 , is

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

Solve log_(4)(x-1)= log_(2) (x-3) .

The number of integral solutions of log_(9)(x+1).log_(2)(x+1)-log_(9)(x+1)-log_(2)(x+1)+1lt0 is

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is

RESONANCE ENGLISH-DPP-QUESTION
  1. If log(6)log(2)[sqrt(4x+2)+2sqrtx]=0thenx=.

    Text Solution

    |

  2. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  3. If x=prod(n=1)^(2000)n, then the value of the expression, (1)/((1)/(l...

    Text Solution

    |

  4. Simplify :""^(3)sqrt(5^((1)/(log(7)5))+(1)/(sqrt(-log(10)(0.1))))

    Text Solution

    |

  5. Solved the following inequations {:((i), (x-5)(x+9)(x-8)lt0,(ii),x^(...

    Text Solution

    |

  6. If m,n in N and m=(n^2-n-35)/(n-4), then find the value of m.

    Text Solution

    |

  7. If x^3 + y^3 + 1 = 3xy, where x!= y determine the value of x + y + 1.

    Text Solution

    |

  8. Number of integers whose characteristic of logarithms to the base 10 i...

    Text Solution

    |

  9. If mantissa of lagarithm of 719.3 to the base 10 is 0.8569 then mantis...

    Text Solution

    |

  10. Number of digits in integral part of 60^(12)+60^(-12)-60^(-15)is ("giv...

    Text Solution

    |

  11. Find logarithm of the following values: 500

    Text Solution

    |

  12. Find antilog of the following values: 0. 0125

    Text Solution

    |

  13. (i) Find antilog of 0.4 to the base 32. (ii) Find antilog of 2 to t...

    Text Solution

    |

  14. Given log(10)2=0.3010."find"log(25)200 by using log table

    Text Solution

    |

  15. Find volume of a cuboid whose edges are 58.73cm,2.631 cm and 0.3798cm ...

    Text Solution

    |

  16. Find the value of (23.17)^((1)/(5.76)) using log table.

    Text Solution

    |

  17. Find number of digits in 875^(16), given log2=.3010300,log7=.8450980.

    Text Solution

    |

  18. If (x^(2)+x)+iy and (-x-1)-i(x+2y) are conjugate of each other, then r...

    Text Solution

    |

  19. ((4i^(3)-i)/(2i+1))^(2) can be expressed in a + ib as

    Text Solution

    |

  20. A number of the form a + ib is called a complex number, where a,b in R...

    Text Solution

    |