Home
Class 12
MATHS
Simplify :""^(3)sqrt(5^((1)/(log(7)5))+(...

Simplify `:""^(3)sqrt(5^((1)/(log_(7)5))+(1)/(sqrt(-log_(10)(0.1))))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt[3]{5^{\frac{1}{\log_{7}5}} + \frac{1}{\sqrt{-\log_{10}(0.1)}}} \), we will follow these steps: ### Step 1: Simplify \( \log_{10}(0.1) \) We know that \( 0.1 = \frac{1}{10} = 10^{-1} \). Therefore, we can use the logarithmic identity: \[ \log_{10}(0.1) = \log_{10}(10^{-1}) = -1 \] ### Step 2: Substitute into the expression Now substituting this back into our expression, we have: \[ -\log_{10}(0.1) = -(-1) = 1 \] Thus, we can rewrite the expression: \[ \sqrt[3]{5^{\frac{1}{\log_{7}5}} + \frac{1}{\sqrt{1}}} \] This simplifies to: \[ \sqrt[3]{5^{\frac{1}{\log_{7}5}} + 1} \] ### Step 3: Simplify \( 5^{\frac{1}{\log_{7}5}} \) Using the change of base formula for logarithms, we have: \[ \frac{1}{\log_{7}5} = \log_{5}7 \] So, we can rewrite \( 5^{\frac{1}{\log_{7}5}} \) as: \[ 5^{\log_{5}7} = 7 \] ### Step 4: Substitute back into the expression Now substituting this back into the expression, we have: \[ \sqrt[3]{7 + 1} = \sqrt[3]{8} \] ### Step 5: Final simplification The cube root of 8 is: \[ \sqrt[3]{8} = 2 \] Thus, the simplified expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Simplify 5^(log1//5^((1//2)))+log_sqrt2(4/(sqrt7+sqrt3))+log_(1//2)(1/(10+2sqrt21)) .

Which of the following numbers are non positive? (A) 5^(log_(11)7)-7(log_(11)5) (B) log_(3)(sqrt(7)-2) (C) log_(7)((1)/(2))^(-1//2) (D) log_(sqrt(2)-1) (sqrt(2)+1)/(sqrt(2)-1)

Solve : sqrt(1+log_(0.04)x)+sqrt(3+log_(0.2)x)=1

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

|{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,5sqrt(log_(5)3)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|" is equal to ""____"

Evaluate {(1/(sqrt(27)))^(2-[(log_(5) 13)/(2log_(5) 9)])}^(1/2)

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

The value of ((1)/(sqrt(27)))^(2-((log_(5)16)/(2log_(5)9))) equal to :

Domain of (sqrt(x^(2)-4x+3)+1) log_(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2)-6)+1) le 1 is

RESONANCE ENGLISH-DPP-QUESTION
  1. The value 'x' satisfying the equation, 4^(log(9)3)+9^(log(2)4)=10^(log...

    Text Solution

    |

  2. If x=prod(n=1)^(2000)n, then the value of the expression, (1)/((1)/(l...

    Text Solution

    |

  3. Simplify :""^(3)sqrt(5^((1)/(log(7)5))+(1)/(sqrt(-log(10)(0.1))))

    Text Solution

    |

  4. Solved the following inequations {:((i), (x-5)(x+9)(x-8)lt0,(ii),x^(...

    Text Solution

    |

  5. If m,n in N and m=(n^2-n-35)/(n-4), then find the value of m.

    Text Solution

    |

  6. If x^3 + y^3 + 1 = 3xy, where x!= y determine the value of x + y + 1.

    Text Solution

    |

  7. Number of integers whose characteristic of logarithms to the base 10 i...

    Text Solution

    |

  8. If mantissa of lagarithm of 719.3 to the base 10 is 0.8569 then mantis...

    Text Solution

    |

  9. Number of digits in integral part of 60^(12)+60^(-12)-60^(-15)is ("giv...

    Text Solution

    |

  10. Find logarithm of the following values: 500

    Text Solution

    |

  11. Find antilog of the following values: 0. 0125

    Text Solution

    |

  12. (i) Find antilog of 0.4 to the base 32. (ii) Find antilog of 2 to t...

    Text Solution

    |

  13. Given log(10)2=0.3010."find"log(25)200 by using log table

    Text Solution

    |

  14. Find volume of a cuboid whose edges are 58.73cm,2.631 cm and 0.3798cm ...

    Text Solution

    |

  15. Find the value of (23.17)^((1)/(5.76)) using log table.

    Text Solution

    |

  16. Find number of digits in 875^(16), given log2=.3010300,log7=.8450980.

    Text Solution

    |

  17. If (x^(2)+x)+iy and (-x-1)-i(x+2y) are conjugate of each other, then r...

    Text Solution

    |

  18. ((4i^(3)-i)/(2i+1))^(2) can be expressed in a + ib as

    Text Solution

    |

  19. A number of the form a + ib is called a complex number, where a,b in R...

    Text Solution

    |

  20. Len n be an integer greater than 1 and let a(n)=(1)/(log(n)1001). If ...

    Text Solution

    |