Home
Class 12
MATHS
Find number of digits in 875^(16), given...

Find number of digits in `875^(16)`, given log2=.3010300,log7=.8450980.

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of digits in \( 875^{16} \), we can use the formula for the number of digits of a number \( n \), which is given by: \[ \text{Number of digits} = \lfloor \log_{10} n \rfloor + 1 \] In this case, \( n = 875^{16} \). Therefore, we need to calculate \( \log_{10} (875^{16}) \). ### Step 1: Use the logarithmic property Using the property of logarithms, we can express this as: \[ \log_{10} (875^{16}) = 16 \cdot \log_{10} (875) \] ### Step 2: Break down \( 875 \) Next, we can express \( 875 \) in terms of its prime factors: \[ 875 = 7 \times 125 = 7 \times (5^3) \] ### Step 3: Apply the logarithmic property Now, we can write: \[ \log_{10} (875) = \log_{10} (7 \times 5^3) = \log_{10} (7) + \log_{10} (5^3) \] Using the property of logarithms \( \log (a^b) = b \cdot \log (a) \): \[ \log_{10} (5^3) = 3 \cdot \log_{10} (5) \] Thus, we have: \[ \log_{10} (875) = \log_{10} (7) + 3 \cdot \log_{10} (5) \] ### Step 4: Express \( \log_{10} (5) \) in terms of \( \log_{10} (2) \) Since \( \log_{10} (5) = \log_{10} \left( \frac{10}{2} \right) = \log_{10} (10) - \log_{10} (2) = 1 - \log_{10} (2) \), we can substitute this into our equation: \[ \log_{10} (875) = \log_{10} (7) + 3 \cdot (1 - \log_{10} (2)) \] ### Step 5: Substitute known logarithm values We are given: - \( \log_{10} (2) = 0.3010300 \) - \( \log_{10} (7) = 0.8450980 \) Substituting these values gives: \[ \log_{10} (875) = 0.8450980 + 3 \cdot (1 - 0.3010300) \] Calculating \( 1 - 0.3010300 \): \[ 1 - 0.3010300 = 0.6989700 \] Now substituting back: \[ \log_{10} (875) = 0.8450980 + 3 \cdot 0.6989700 \] Calculating \( 3 \cdot 0.6989700 \): \[ 3 \cdot 0.6989700 = 2.0969100 \] Thus: \[ \log_{10} (875) = 0.8450980 + 2.0969100 = 2.9420080 \] ### Step 6: Calculate \( \log_{10} (875^{16}) \) Now we can find: \[ \log_{10} (875^{16}) = 16 \cdot 2.9420080 = 47.0721280 \] ### Step 7: Find the number of digits Finally, we apply the formula for the number of digits: \[ \text{Number of digits} = \lfloor 47.0721280 \rfloor + 1 = 47 + 1 = 48 \] Thus, the number of digits in \( 875^{16} \) is **48**. ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

How many zeroes are there between the decimal point and first significasnt digits in (0.0504)^10 . Given log2=0.301,log3=0.477 nd log7= 0.845

Find the number of digits in (72)^15 without actual computation. Given log2=0.301, log3=0.477.

If log2=0. 30101 ,\ log3=0. 47712 , then the number of digits in 6^(20) is 15 b. 16 c. 17 d. 18

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)

Find the numbers of zeroes between the decimal point and first significant digit of (0.036)^16 , where log 2=0.301 and log 3=0.477 .

Number of digits in integral part of 60^(12)+60^(-12)-60^(-15)is ("given log"2=0.3030.log3=0.4771)

If log_(10) 2 = 0.3010 and log_(10) 3 = 0.477 , then find the number of digits in the following numbers: (a) 3^(40)" "(b) 2^(32) xx 5^(25)" (c) 24^(24)

Given that log(2)=0. 3010 , the number of digits in the number 2000^(2000) is 6601 (b) 6602 (c) 6603 (d) 6604

Given that log(2)=0. 3010 , the number of digits in the number 2000^(2000) is 6601 (b) 6602 (c) 6603 (d) 6604

Find the number of solution of log_(1/2) |sinx| = 2 - log_(1/2) |cosx|, x in [0, 2pi]

RESONANCE ENGLISH-DPP-QUESTION
  1. Find volume of a cuboid whose edges are 58.73cm,2.631 cm and 0.3798cm ...

    Text Solution

    |

  2. Find the value of (23.17)^((1)/(5.76)) using log table.

    Text Solution

    |

  3. Find number of digits in 875^(16), given log2=.3010300,log7=.8450980.

    Text Solution

    |

  4. If (x^(2)+x)+iy and (-x-1)-i(x+2y) are conjugate of each other, then r...

    Text Solution

    |

  5. ((4i^(3)-i)/(2i+1))^(2) can be expressed in a + ib as

    Text Solution

    |

  6. A number of the form a + ib is called a complex number, where a,b in R...

    Text Solution

    |

  7. Len n be an integer greater than 1 and let a(n)=(1)/(log(n)1001). If ...

    Text Solution

    |

  8. If B=(12)/(3+sqrt5+sqrt8)andA=sqrt1+sqrt2+sqrt5-sqrt10, then value of ...

    Text Solution

    |

  9. Let ordered pair (alpha, beta) satisfying the system of equations 2 lo...

    Text Solution

    |

  10. If P(x) is a polynomial with integer coefficients such that for 4 dist...

    Text Solution

    |

  11. If the remainder R(x)=ax+b is ontained by dividing the polynomial x^(1...

    Text Solution

    |

  12. log(1/4)((35-x^2)/x)geq-1/2

    Text Solution

    |

  13. (0. 5)^((log(1/3) ((x+5)/(x^2+3)))>1

    Text Solution

    |

  14. If (a+b)/x=(b+c)/y=(c+a)/z ,then (A) (a+b+c)/(x+y+z)=(ab+bc+ca)/(ay+bz...

    Text Solution

    |

  15. If (x1, y1)&(x2, y2) are the solutions of the equaltions, (log)(225)(x...

    Text Solution

    |

  16. The vlaue of (81^((1)/(log(5)9))+3^((3)/(log(sqrt(6))3)))/(409)((sqrt(...

    Text Solution

    |

  17. The number of roots of the equation log(3sqrtx)x + log(3x) sqrtx = 0 ...

    Text Solution

    |

  18. For positive real numbers a (a>1) let pa and qa, be the maximum and mi...

    Text Solution

    |

  19. Let a >2 be a constant. If there are just 18 positive integers satisfy...

    Text Solution

    |

  20. If p,q in N" satisfy the equation "x^(sqrtx) = (sqrtx)^(x), then

    Text Solution

    |