Home
Class 12
MATHS
Solve ((1)/(2))^(logx^(2))+2gt3.2^(log(-...

Solve `((1)/(2))^(logx^(2))+2gt3.2^(log(-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\left(\frac{1}{2}\right)^{\log x^2} + 2 > 3 \cdot 2^{\log(-x)}\), we will proceed step by step. ### Step 1: Rewrite the terms using properties of logarithms We know that \(\log x^2 = 2 \log x\). Therefore, we can rewrite the left-hand side: \[ \left(\frac{1}{2}\right)^{\log x^2} = \left(\frac{1}{2}\right)^{2 \log x} = \left(\left(\frac{1}{2}\right)^{\log x}\right)^2 \] Thus, the inequality becomes: \[ \left(\left(\frac{1}{2}\right)^{\log x}\right)^2 + 2 > 3 \cdot 2^{\log(-x)} \] ### Step 2: Simplify the right-hand side Using the property \(a^{\log b} = b^{\log a}\), we can rewrite \(2^{\log(-x)}\) as: \[ 2^{\log(-x)} = -x^{\log 2} \] So the inequality now looks like: \[ \left(\left(\frac{1}{2}\right)^{\log x}\right)^2 + 2 > 3(-x^{\log 2}) \] ### Step 3: Let \(t = \left(\frac{1}{2}\right)^{\log(-x)}\) Let \(t = \left(\frac{1}{2}\right)^{\log(-x)}\). Then we can express the inequality as: \[ t^2 + 2 > 3(-x^{\log 2}) \] ### Step 4: Rearranging the inequality Rearranging gives us: \[ t^2 - 3(-x^{\log 2}) + 2 > 0 \] ### Step 5: Solve the quadratic inequality The quadratic \(t^2 - 3t + 2 = 0\) can be factored as: \[ (t - 1)(t - 2) > 0 \] The roots are \(t = 1\) and \(t = 2\). ### Step 6: Analyze the intervals The sign of the quadratic changes at the roots. Thus, we analyze the intervals: - For \(t < 1\), the expression is positive. - For \(1 < t < 2\), the expression is negative. - For \(t > 2\), the expression is positive. So, the solution for \(t\) is: \[ t < 1 \quad \text{or} \quad t > 2 \] ### Step 7: Substitute back for \(t\) Substituting back for \(t\): 1. For \(t < 1\): \[ \left(\frac{1}{2}\right)^{\log(-x)} < 1 \implies \log(-x) < 0 \implies -x < 1 \implies x > -1 \] 2. For \(t > 2\): \[ \left(\frac{1}{2}\right)^{\log(-x)} > 2 \implies \log(-x) < -1 \implies -x < \frac{1}{2} \implies x > -\frac{1}{2} \] ### Final Solution Combining these results, we have: \[ x > -1 \quad \text{and} \quad x > -\frac{1}{2} \] Thus, the solution set is: \[ x > -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

(1/2)^(logx^2)+2> 3.2^(-"log"(-x))

solve int_(1)^(2)(log x)/(x^(2))dx

Solve (1/3) ^(|x+2|/(2-|x|))gt9

Solve (log)_(2x)2+(log)_4 2x=-3//2.

Solve (log)_(2x)2+(log)_4 2x=-3//2.

Solve log_(2).(x-1)/(x-2) gt 0 .

Solve (log)_2(3x-2)=(log)_(1/2)x

Solve (log)_2(3x-2)=(log)_(1/2)x

The integral int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is equal to

Solve the equation (1-2(logx^(2))^(2))/(logx-2(logx)^(2))=1

RESONANCE ENGLISH-DPP-QUESTION
  1. Which is/are true ? (A) log(0.2)3lt log(2)3 (B) log(sqrt(5))10ltlog (...

    Text Solution

    |

  2. The solution of the equation 7^(logx)-5^(logx+1)=3*5^(logx-1)-13*7 ^(l...

    Text Solution

    |

  3. Solve ((1)/(2))^(logx^(2))+2gt3.2^(log(-x))

    Text Solution

    |

  4. The values of x satisfying 2log((1)/(4))(x+5)gt(9)/(4)log((1)/(3sqrt(3...

    Text Solution

    |

  5. If a and b are positive integers such that a^(2)-b^(4)=2009, then a+b^...

    Text Solution

    |

  6. Find number of integral solutionlog(x+3)(x^(2)-x)lt1

    Text Solution

    |

  7. Suppose xy-5x+2y=30, where x and y are positive integers. Find the num...

    Text Solution

    |

  8. Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x...

    Text Solution

    |

  9. If alpha,beta be the roots of the equation (x-a)(x-b)+c=0(c!=0), then ...

    Text Solution

    |

  10. If sum(r=0)^(n-1)log(2)((r+2)/(r+1)) =prod(r=10)^(99)log(r) (r+1), the...

    Text Solution

    |

  11. Solve for x: log(2)x le 2/(log(2)x-1)

    Text Solution

    |

  12. Solve the in equality log(1/4) (2-x)>log(1/4) (2/(x+1)).

    Text Solution

    |

  13. Given that log(a^(2))(a^(2)+1)=16 find the value of log(a^(32))"("a+1/...

    Text Solution

    |

  14. If (3log(10)x+19)/(3log(10)x-1)=2 log(10)x+1, find solution of equatio...

    Text Solution

    |

  15. Prove that there exist no natural numbers, m and n such that m^(2)=n^(...

    Text Solution

    |

  16. Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-...

    Text Solution

    |

  17. If (u)/(alpha)=(v)/(beta)=then (u)/(alpha)=(v)/(beta)=((au^(n)+bv^(n))...

    Text Solution

    |

  18. If ratio of the work done by n men in (n+2) days is to the work done b...

    Text Solution

    |

  19. Number of non-negative integral values of 'k' for which roots of the e...

    Text Solution

    |

  20. Let y=1/(2+1/(3+(1/(2+1/3+....))) The value of y is :

    Text Solution

    |