Home
Class 12
MATHS
Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(...

Solve : `(i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will address each part of the question separately. ### Part (i): Solve \(\frac{(x-1)(x-2)(x-3)}{(x+1)(x+2)(x+3)} > 0\) **Step 1: Identify the critical points.** The critical points occur when the numerator or denominator equals zero. - Numerator: \( (x-1)(x-2)(x-3) = 0 \) gives \( x = 1, 2, 3 \). - Denominator: \( (x+1)(x+2)(x+3) = 0 \) gives \( x = -1, -2, -3 \). **Step 2: Determine the intervals.** The critical points divide the number line into intervals: - \( (-\infty, -3) \) - \( (-3, -2) \) - \( (-2, -1) \) - \( (-1, 1) \) - \( (1, 2) \) - \( (2, 3) \) - \( (3, \infty) \) **Step 3: Test each interval.** Choose a test point from each interval to determine the sign of the expression. 1. For \( x = -4 \) in \( (-\infty, -3) \): \[ \frac{(-)(-)(-)}{(-)(-)(-)} = \frac{-}{-} = + \] 2. For \( x = -2.5 \) in \( (-3, -2) \): \[ \frac{(-)(-)(-)}{(-)(+)(-)} = \frac{-}{+} = - \] 3. For \( x = -1.5 \) in \( (-2, -1) \): \[ \frac{(-)(-)(-)}{(+)(+)(-)} = \frac{-}{-} = + \] 4. For \( x = 0 \) in \( (-1, 1) \): \[ \frac{(-)(-)(-)}{(+)(+)(+)} = \frac{-}{+} = - \] 5. For \( x = 1.5 \) in \( (1, 2) \): \[ \frac{(+)(-)(-)}{(+)(+)(+)} = \frac{+}{+} = + \] 6. For \( x = 2.5 \) in \( (2, 3) \): \[ \frac{(+)(+)(-)}{(+)(+)(+)} = \frac{-}{+} = - \] 7. For \( x = 4 \) in \( (3, \infty) \): \[ \frac{(+)(+)(+)}{(+)(+)(+)} = \frac{+}{+} = + \] **Step 4: Compile the results.** The expression is positive in the intervals: - \( (-\infty, -3) \) - \( (-2, -1) \) - \( (1, 2) \) - \( (3, \infty) \) **Step 5: Write the final solution.** The solution to the inequality is: \[ x \in (-\infty, -3) \cup (-2, -1) \cup (1, 2) \cup (3, \infty) \] ### Part (ii): Solve \(\frac{x^4 + x^2 + 1}{x^2 - 4x - 5} < 0\) **Step 1: Analyze the numerator.** The numerator \( x^4 + x^2 + 1 \) is always positive because it is a sum of squares (even degree polynomial with positive leading coefficient). **Step 2: Factor the denominator.** Factor \( x^2 - 4x - 5 \): \[ x^2 - 4x - 5 = (x - 5)(x + 1) \] **Step 3: Identify the critical points.** The critical points from the denominator are: - \( x = 5 \) - \( x = -1 \) **Step 4: Determine the intervals.** The critical points divide the number line into intervals: - \( (-\infty, -1) \) - \( (-1, 5) \) - \( (5, \infty) \) **Step 5: Test each interval.** Choose a test point from each interval to determine the sign of the expression. 1. For \( x = -2 \) in \( (-\infty, -1) \): \[ \frac{(+)}{(-)} = - \] 2. For \( x = 0 \) in \( (-1, 5) \): \[ \frac{(+)}{(-)} = - \] 3. For \( x = 6 \) in \( (5, \infty) \): \[ \frac{(+)}{(+)} = + \] **Step 6: Compile the results.** The expression is negative in the intervals: - \( (-\infty, -1) \) - \( (-1, 5) \) **Step 7: Write the final solution.** The solution to the inequality is: \[ x \in (-\infty, -1) \cup (-1, 5) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-1)gt0.

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

Solve : (x+4)/(x-2)-(2)/(x+1) lt 0

Solve x(2^x-1)(3^x-9)^5(x-3)<0.

Find Lt_(xto1)(2x-1)/(3x^(2)-4x+5)

Solve : (i) x(x+1)+(x+2)(x+3)=42 (ii) (1)/(x+1)-(2)/(x+2)=(3)/(x+3)-(4)/(x+4)

Solve : (i) (x^(2)-x)^(2)+5(x^(2)-x)+4=0 (ii) (x^(2)-3x)^(2)-16(x^(2)-3x)-36=0

Solve : (|x-1|-3)(|x+2)-5) lt 0 .

Solve : (i) sqrt((x)/(x-3))+sqrt((x-3)/(x))=(5)/(2) (ii) ((2x-3)/(x-1))-4((x-1)/(2x-3))=3

Solve: 3/4(7x-1)-(2x-(1-x)/2)=x+3/2

RESONANCE ENGLISH-DPP-QUESTION
  1. Find number of integral solutionlog(x+3)(x^(2)-x)lt1

    Text Solution

    |

  2. Suppose xy-5x+2y=30, where x and y are positive integers. Find the num...

    Text Solution

    |

  3. Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x...

    Text Solution

    |

  4. If alpha,beta be the roots of the equation (x-a)(x-b)+c=0(c!=0), then ...

    Text Solution

    |

  5. If sum(r=0)^(n-1)log(2)((r+2)/(r+1)) =prod(r=10)^(99)log(r) (r+1), the...

    Text Solution

    |

  6. Solve for x: log(2)x le 2/(log(2)x-1)

    Text Solution

    |

  7. Solve the in equality log(1/4) (2-x)>log(1/4) (2/(x+1)).

    Text Solution

    |

  8. Given that log(a^(2))(a^(2)+1)=16 find the value of log(a^(32))"("a+1/...

    Text Solution

    |

  9. If (3log(10)x+19)/(3log(10)x-1)=2 log(10)x+1, find solution of equatio...

    Text Solution

    |

  10. Prove that there exist no natural numbers, m and n such that m^(2)=n^(...

    Text Solution

    |

  11. Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-...

    Text Solution

    |

  12. If (u)/(alpha)=(v)/(beta)=then (u)/(alpha)=(v)/(beta)=((au^(n)+bv^(n))...

    Text Solution

    |

  13. If ratio of the work done by n men in (n+2) days is to the work done b...

    Text Solution

    |

  14. Number of non-negative integral values of 'k' for which roots of the e...

    Text Solution

    |

  15. Let y=1/(2+1/(3+(1/(2+1/3+....))) The value of y is :

    Text Solution

    |

  16. If x-=2+2^(2//3)+2^(1//3)" then the value "(x^(3)-6x^(2)+6x) is

    Text Solution

    |

  17. If log 15=a and log75=b, then log(75)45 is:

    Text Solution

    |

  18. If log(10)(x-1)^3-3log(10)(x-3)=log(10)8,then log(x)625 has the value ...

    Text Solution

    |

  19. Find all positive integers of x and y where equation is 1/sqrt x+1/sqr...

    Text Solution

    |

  20. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |