Home
Class 12
MATHS
Solve for x: log(2)x le 2/(log(2)x-1)...

Solve for x: `log_(2)x le 2/(log_(2)x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_2 x \leq \frac{2}{\log_2 x - 1} \), we will follow these steps: ### Step 1: Rearranging the Inequality Start by moving all terms to one side of the inequality: \[ \log_2 x - \frac{2}{\log_2 x - 1} \leq 0 \] ### Step 2: Substituting Variables Let \( t = \log_2 x \). Then the inequality becomes: \[ t - \frac{2}{t - 1} \leq 0 \] ### Step 3: Finding a Common Denominator To combine the terms, find a common denominator: \[ \frac{t(t - 1) - 2}{t - 1} \leq 0 \] This simplifies to: \[ \frac{t^2 - t - 2}{t - 1} \leq 0 \] ### Step 4: Factoring the Numerator Now, factor the quadratic in the numerator: \[ \frac{(t - 2)(t + 1)}{t - 1} \leq 0 \] ### Step 5: Finding Critical Points The critical points are found by setting the numerator and denominator to zero: 1. \( t - 2 = 0 \) gives \( t = 2 \) 2. \( t + 1 = 0 \) gives \( t = -1 \) 3. \( t - 1 = 0 \) gives \( t = 1 \) ### Step 6: Testing Intervals Now we test the intervals determined by these critical points: \( (-\infty, -1) \), \( (-1, 1) \), \( (1, 2) \), and \( (2, \infty) \). - **Interval \( (-\infty, -1) \)**: Choose \( t = -2 \): \[ \frac{(-2 - 2)(-2 + 1)}{-2 - 1} = \frac{-4 \cdot -1}{-3} > 0 \] - **Interval \( (-1, 1) \)**: Choose \( t = 0 \): \[ \frac{(0 - 2)(0 + 1)}{0 - 1} = \frac{-2 \cdot 1}{-1} > 0 \] - **Interval \( (1, 2) \)**: Choose \( t = 1.5 \): \[ \frac{(1.5 - 2)(1.5 + 1)}{1.5 - 1} = \frac{-0.5 \cdot 2.5}{0.5} < 0 \] - **Interval \( (2, \infty) \)**: Choose \( t = 3 \): \[ \frac{(3 - 2)(3 + 1)}{3 - 1} = \frac{1 \cdot 4}{2} > 0 \] ### Step 7: Conclusion on Intervals The inequality \( \frac{(t - 2)(t + 1)}{t - 1} \leq 0 \) holds in the interval \( (1, 2] \). ### Step 8: Back Substituting for \( x \) Now, convert back to \( x \): - From \( t = \log_2 x \): - \( t = 1 \) gives \( x = 2^1 = 2 \) - \( t = 2 \) gives \( x = 2^2 = 4 \) ### Step 9: Considering the Domain Since \( \log_2 x \) is defined for \( x > 0 \), we also need to consider the domain: - The solution must be \( x > 0 \). ### Final Solution Thus, the solution set is: \[ x \in (0, \frac{1}{2}) \cup (2, 4] \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Solve for x : log_(10)x = -2 .

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve 1 lt log_(2)(x-2) le 2 .

Solve for x, if : log_(x)49 - log_(x)7 + "log"_(x)(1)/(343) + 2 = 0 .

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

Solve for x: log_(4) (2x+3) =(3)/(2)

Solve for x: log_(sqrt3) (x+1) = 2

Solve for x : log(x - 1) + log(x + 1) = log_(2)1 .

Solve log_(3)(x-2) le 2 .

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).

RESONANCE ENGLISH-DPP-QUESTION
  1. If alpha,beta be the roots of the equation (x-a)(x-b)+c=0(c!=0), then ...

    Text Solution

    |

  2. If sum(r=0)^(n-1)log(2)((r+2)/(r+1)) =prod(r=10)^(99)log(r) (r+1), the...

    Text Solution

    |

  3. Solve for x: log(2)x le 2/(log(2)x-1)

    Text Solution

    |

  4. Solve the in equality log(1/4) (2-x)>log(1/4) (2/(x+1)).

    Text Solution

    |

  5. Given that log(a^(2))(a^(2)+1)=16 find the value of log(a^(32))"("a+1/...

    Text Solution

    |

  6. If (3log(10)x+19)/(3log(10)x-1)=2 log(10)x+1, find solution of equatio...

    Text Solution

    |

  7. Prove that there exist no natural numbers, m and n such that m^(2)=n^(...

    Text Solution

    |

  8. Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-...

    Text Solution

    |

  9. If (u)/(alpha)=(v)/(beta)=then (u)/(alpha)=(v)/(beta)=((au^(n)+bv^(n))...

    Text Solution

    |

  10. If ratio of the work done by n men in (n+2) days is to the work done b...

    Text Solution

    |

  11. Number of non-negative integral values of 'k' for which roots of the e...

    Text Solution

    |

  12. Let y=1/(2+1/(3+(1/(2+1/3+....))) The value of y is :

    Text Solution

    |

  13. If x-=2+2^(2//3)+2^(1//3)" then the value "(x^(3)-6x^(2)+6x) is

    Text Solution

    |

  14. If log 15=a and log75=b, then log(75)45 is:

    Text Solution

    |

  15. If log(10)(x-1)^3-3log(10)(x-3)=log(10)8,then log(x)625 has the value ...

    Text Solution

    |

  16. Find all positive integers of x and y where equation is 1/sqrt x+1/sqr...

    Text Solution

    |

  17. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  18. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  19. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  20. If x, y and z are real and distinct, then x^(2)+9y^(2)+16z^(2)-3xy-12y...

    Text Solution

    |