Home
Class 12
MATHS
Given that log(a^(2))(a^(2)+1)=16 find t...

Given that `log_(a^(2))(a^(2)+1)=16` find the value of `log_(a^(32))"("a+1/a")"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{a^{32}} \left( a + \frac{1}{a} \right) \) given that \( \log_{a^2}(a^2 + 1) = 16 \). ### Step-by-step Solution: 1. **Understanding the Given Information:** We know: \[ \log_{a^2}(a^2 + 1) = 16 \] This means: \[ a^2 + 1 = (a^2)^{16} = a^{32} \] 2. **Rearranging the Expression:** We want to find: \[ \log_{a^{32}} \left( a + \frac{1}{a} \right) \] Let's denote this value as \( x \): \[ x = \log_{a^{32}} \left( a + \frac{1}{a} \right) \] 3. **Using Logarithmic Properties:** We can use the property of logarithms: \[ \log_{b^m}(a) = \frac{1}{m} \log_b(a) \] Thus, we can rewrite \( x \): \[ x = \frac{1}{32} \log_{a} \left( a + \frac{1}{a} \right) \] 4. **Simplifying \( a + \frac{1}{a} \):** We can express \( a + \frac{1}{a} \) in terms of \( a^2 \): \[ a + \frac{1}{a} = \frac{a^2 + 1}{a} \] 5. **Applying Logarithmic Properties Again:** Using the property \( \log(a/b) = \log(a) - \log(b) \): \[ \log_{a} \left( a + \frac{1}{a} \right) = \log_{a} \left( \frac{a^2 + 1}{a} \right) = \log_{a}(a^2 + 1) - \log_{a}(a) \] Since \( \log_{a}(a) = 1 \): \[ \log_{a} \left( a + \frac{1}{a} \right) = \log_{a}(a^2 + 1) - 1 \] 6. **Substituting the Known Value:** From the given information, we know: \[ \log_{a}(a^2 + 1) = 16 \cdot \log_{a}(a^2) = 16 \cdot 2 = 32 \] Therefore: \[ \log_{a}(a^2 + 1) = 32 \] So: \[ \log_{a} \left( a + \frac{1}{a} \right) = 32 - 1 = 31 \] 7. **Final Calculation:** Now substituting back into our expression for \( x \): \[ x = \frac{1}{32} \cdot 31 = \frac{31}{32} \] ### Final Answer: \[ \log_{a^{32}} \left( a + \frac{1}{a} \right) = \frac{31}{32} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following log_(30)1

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Prove that log_2log_2log_(2) 16 =1

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

Given (log _(10 ) ^(16))/(log _(10 ) ^(2)) = log _(10 ) ^(a) find the value of ( a+ 100) .

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

The value of x, log_(1/2)x >= log_(1/3)x is

Given log 2 =0.3010, log 3=0.4771, find thevalue of ((16)^(1/5) *5^2)/108^3

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

RESONANCE ENGLISH-DPP-QUESTION
  1. Solve for x: log(2)x le 2/(log(2)x-1)

    Text Solution

    |

  2. Solve the in equality log(1/4) (2-x)>log(1/4) (2/(x+1)).

    Text Solution

    |

  3. Given that log(a^(2))(a^(2)+1)=16 find the value of log(a^(32))"("a+1/...

    Text Solution

    |

  4. If (3log(10)x+19)/(3log(10)x-1)=2 log(10)x+1, find solution of equatio...

    Text Solution

    |

  5. Prove that there exist no natural numbers, m and n such that m^(2)=n^(...

    Text Solution

    |

  6. Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-...

    Text Solution

    |

  7. If (u)/(alpha)=(v)/(beta)=then (u)/(alpha)=(v)/(beta)=((au^(n)+bv^(n))...

    Text Solution

    |

  8. If ratio of the work done by n men in (n+2) days is to the work done b...

    Text Solution

    |

  9. Number of non-negative integral values of 'k' for which roots of the e...

    Text Solution

    |

  10. Let y=1/(2+1/(3+(1/(2+1/3+....))) The value of y is :

    Text Solution

    |

  11. If x-=2+2^(2//3)+2^(1//3)" then the value "(x^(3)-6x^(2)+6x) is

    Text Solution

    |

  12. If log 15=a and log75=b, then log(75)45 is:

    Text Solution

    |

  13. If log(10)(x-1)^3-3log(10)(x-3)=log(10)8,then log(x)625 has the value ...

    Text Solution

    |

  14. Find all positive integers of x and y where equation is 1/sqrt x+1/sqr...

    Text Solution

    |

  15. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  16. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  17. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  18. If x, y and z are real and distinct, then x^(2)+9y^(2)+16z^(2)-3xy-12y...

    Text Solution

    |

  19. If logy^(x)=(alog(z)y)=(blog(x)z=ab, then which of the following pairs...

    Text Solution

    |

  20. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |