Home
Class 12
MATHS
If (3log(10)x+19)/(3log(10)x-1)=2 log(10...

If `(3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1,` find solution of equation.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3 \log_{10} x + 19}{3 \log_{10} x - 1} = 2 \log_{10} x + 1\), we will follow these steps: ### Step 1: Substitute \(y\) for \(\log_{10} x\) Let \(y = \log_{10} x\). Then, we can rewrite the equation as: \[ \frac{3y + 19}{3y - 1} = 2y + 1 \] ### Step 2: Cross-multiply Cross-multiplying gives us: \[ 3y + 19 = (2y + 1)(3y - 1) \] ### Step 3: Expand the right side Expanding the right-hand side: \[ 3y + 19 = 2y \cdot 3y - 2y + 1 \cdot 3y - 1 \] \[ 3y + 19 = 6y^2 - 2y + 3y - 1 \] \[ 3y + 19 = 6y^2 + y - 1 \] ### Step 4: Rearrange the equation Now, rearranging the equation gives: \[ 0 = 6y^2 + y - 1 - 3y - 19 \] \[ 0 = 6y^2 - 2y - 20 \] ### Step 5: Simplify the equation Dividing the entire equation by 2: \[ 0 = 3y^2 - y - 10 \] ### Step 6: Factor the quadratic equation To factor \(3y^2 - y - 10\), we can rewrite it: \[ 3y^2 - 6y + 5y - 10 = 0 \] Grouping gives: \[ 3y(y - 2) + 5(y - 2) = 0 \] Factoring out \((y - 2)\): \[ (3y + 5)(y - 2) = 0 \] ### Step 7: Solve for \(y\) Setting each factor to zero gives: 1. \(3y + 5 = 0 \Rightarrow y = -\frac{5}{3}\) 2. \(y - 2 = 0 \Rightarrow y = 2\) ### Step 8: Convert back to \(x\) Recall that \(y = \log_{10} x\): 1. For \(y = 2\): \[ \log_{10} x = 2 \Rightarrow x = 10^2 = 100 \] 2. For \(y = -\frac{5}{3}\): \[ \log_{10} x = -\frac{5}{3} \Rightarrow x = 10^{-\frac{5}{3}} = \frac{1}{10^{\frac{5}{3}}} \] ### Final Solution Thus, the solutions for \(x\) are: \[ x = 100 \quad \text{and} \quad x = 10^{-\frac{5}{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Let I_(1) : (log_(x)2) (log_(2x)2) (log_(2)4x)gt1 I_(2) : x^((log_(10)x)^(2)-3(log_(10)x)+1) gt 1000 and solution of inequality I_(1) is ((1)/(a^(sqrt(a))),(1)/(b))cup(c, a^(sqrt(a))) and solution of inequality I_(2) is (d, oo) then answer the following Both root of equation dx^(2) - bx + k = 0, (k in R) are positive then k can not be

Let I_(1) : (log_(x)2) (log_(2x)2) (log_(2)4x)gt1 I_(2) : x^((log_(10)x)^(2)-3(log_(10)x)+1) gt 1000 and solution of inequality I_(1) is ((1)/(a^(sqrt(a))),(1)/(b))cup(c, a^(sqrt(a))) and solution of inequality I_(2) is (d, oo) then answer the following Sum of 'd' term of a GP whose common ratio is (1)/(a) and first term is c is more than

((log)_(10)(x-3))/((log)_(10)(x^2-21))=1/2 then find x.

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If log_(10)x+log_(10)y=2, x-y=15 then :

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

Let alpha,beta , are two real solution of equation (log_(10)x)^2 + log_(10)x^2 = (log_(10))^2 -1, then sqrt1/(alpha beta) equal to (i) 20 (ii) 3 (iii) 10 (iv) 1

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

RESONANCE ENGLISH-DPP-QUESTION
  1. Solve the in equality log(1/4) (2-x)>log(1/4) (2/(x+1)).

    Text Solution

    |

  2. Given that log(a^(2))(a^(2)+1)=16 find the value of log(a^(32))"("a+1/...

    Text Solution

    |

  3. If (3log(10)x+19)/(3log(10)x-1)=2 log(10)x+1, find solution of equatio...

    Text Solution

    |

  4. Prove that there exist no natural numbers, m and n such that m^(2)=n^(...

    Text Solution

    |

  5. Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-...

    Text Solution

    |

  6. If (u)/(alpha)=(v)/(beta)=then (u)/(alpha)=(v)/(beta)=((au^(n)+bv^(n))...

    Text Solution

    |

  7. If ratio of the work done by n men in (n+2) days is to the work done b...

    Text Solution

    |

  8. Number of non-negative integral values of 'k' for which roots of the e...

    Text Solution

    |

  9. Let y=1/(2+1/(3+(1/(2+1/3+....))) The value of y is :

    Text Solution

    |

  10. If x-=2+2^(2//3)+2^(1//3)" then the value "(x^(3)-6x^(2)+6x) is

    Text Solution

    |

  11. If log 15=a and log75=b, then log(75)45 is:

    Text Solution

    |

  12. If log(10)(x-1)^3-3log(10)(x-3)=log(10)8,then log(x)625 has the value ...

    Text Solution

    |

  13. Find all positive integers of x and y where equation is 1/sqrt x+1/sqr...

    Text Solution

    |

  14. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  15. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  16. Given that N=7^(log(49),900),A=2^(log(2)4)+3^(log(2)4)-4^(log(2)2),D=...

    Text Solution

    |

  17. If x, y and z are real and distinct, then x^(2)+9y^(2)+16z^(2)-3xy-12y...

    Text Solution

    |

  18. If logy^(x)=(alog(z)y)=(blog(x)z=ab, then which of the following pairs...

    Text Solution

    |

  19. If x1,x2 & x3 are the three real solutions of the equation x^(log10^2...

    Text Solution

    |

  20. If ' a ' is a natural number and ' b ' a digit such that(3a+2007)^2=4b...

    Text Solution

    |