Home
Class 12
MATHS
If [{:(,x-y,1,z),(,2x-y,0,w):}]=[{:(,-1,...

If `[{:(,x-y,1,z),(,2x-y,0,w):}]=[{:(,-1,1,4),(,0,0,5):}], "find x,y,z,w"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to equate the corresponding elements of the two matrices and solve for the variables \( x, y, z, \) and \( w \). ### Step-by-Step Solution: 1. **Write down the given matrices:** \[ \begin{pmatrix} x - y & 1 & z \\ 2x - y & 0 & w \end{pmatrix} = \begin{pmatrix} -1 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix} \] 2. **Equate the corresponding elements:** - From the first row, first column: \[ x - y = -1 \quad \text{(1)} \] - From the first row, second column: \[ 1 = 1 \quad \text{(True, no new information)} \] - From the first row, third column: \[ z = 4 \quad \text{(2)} \] - From the second row, first column: \[ 2x - y = 0 \quad \text{(3)} \] - From the second row, second column: \[ 0 = 0 \quad \text{(True, no new information)} \] - From the second row, third column: \[ w = 5 \quad \text{(4)} \] 3. **Substitute the values of \( z \) and \( w \):** - From (2), we have \( z = 4 \). - From (4), we have \( w = 5 \). 4. **Now solve for \( x \) and \( y \):** - We have two equations (1) and (3): \[ x - y = -1 \quad \text{(1)} \] \[ 2x - y = 0 \quad \text{(3)} \] 5. **Subtract equation (1) from equation (3):** \[ (2x - y) - (x - y) = 0 - (-1) \] Simplifying this gives: \[ 2x - y - x + y = 1 \] \[ x = 1 \quad \text{(5)} \] 6. **Substitute the value of \( x \) back into equation (1) to find \( y \):** \[ 1 - y = -1 \] Rearranging gives: \[ y = 2 \quad \text{(6)} \] 7. **Final values:** - From (5), \( x = 1 \) - From (6), \( y = 2 \) - From (2), \( z = 4 \) - From (4), \( w = 5 \) Thus, the final answers are: \[ x = 1, \quad y = 2, \quad z = 4, \quad w = 5 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If [(x-y ,z),(2x-y,omega)]=[(-1 ,4),( 0 ,5)] , find x ,\ y ,\ z ,\ omega .

If [{:(xy,4),(z+6,x+y):}]=[{:(8,w),(0,6):}] , then find the values of x,y,z and w.

If [{:(x+3,2y+x),(z-1,4w-8):}]=[{:(-x-1,0),(" "3,2w):}], then find the value of |x+y|+|z+w|.

If [(x,3x-y),(2x+z,3y-omega)]=[(3 ,2 ),(4 ,7)] , find x ,\ y ,\ z ,\ omega .

If [(x,3x-y),(2x+z,3y-w)]=[(3,2),(4,7)], then find x+y+z+w.

If [[x+y,z],[9x+3y,omega]] = [[-2,4], [0,5]], find x,y,z,w

If [(1, 0 ,0 ),(0,y,0),( 0, 0, 1)][(x),(-1),(z)]=[(1),( 0),( 1)] , find x ,\ y\ a n d\ z .

If [(1,0,0),(0, 0, 1),(0,1,0)][(x),(y),(z)]=[(2),(-1),(3)] , find x ,\ y ,\ z .

If [(1,0,0 ), (0,-1,0), (0,0, -1)][(x),(y),( z)]=[(1),(0),(1)] , find x ,\ y\ a n d\ z .