Home
Class 12
MATHS
If A=[{:(,2,-1),(,3,4):}]=B=[{:(,5,2),(,...

If `A=[{:(,2,-1),(,3,4):}]=B=[{:(,5,2),(,7,4):}],C=[{:(,2,5),(,3,8):}]` and AB-CD=0 find D.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( D \) given the matrices \( A \), \( B \), and \( C \) and the equation \( AB - CD = 0 \). ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix} \] Assume: \[ D = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 2: Set up the equation From the problem, we have: \[ AB - CD = 0 \implies AB = CD \] ### Step 3: Calculate \( AB \) To find \( AB \): \[ AB = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \times 5 + (-1) \times 7 = 10 - 7 = 3 \) - First row, second column: \( 2 \times 2 + (-1) \times 4 = 4 - 4 = 0 \) - Second row, first column: \( 3 \times 5 + 4 \times 7 = 15 + 28 = 43 \) - Second row, second column: \( 3 \times 2 + 4 \times 4 = 6 + 16 = 22 \) Thus, \[ AB = \begin{pmatrix} 3 & 0 \\ 43 & 22 \end{pmatrix} \] ### Step 4: Calculate \( CD \) Now, we need to calculate \( CD \): \[ CD = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2a + 5c \) - First row, second column: \( 2b + 5d \) - Second row, first column: \( 3a + 8c \) - Second row, second column: \( 3b + 8d \) Thus, \[ CD = \begin{pmatrix} 2a + 5c & 2b + 5d \\ 3a + 8c & 3b + 8d \end{pmatrix} \] ### Step 5: Set up the equations Since \( AB = CD \), we have: \[ \begin{pmatrix} 3 & 0 \\ 43 & 22 \end{pmatrix} = \begin{pmatrix} 2a + 5c & 2b + 5d \\ 3a + 8c & 3b + 8d \end{pmatrix} \] From this, we can set up the following equations: 1. \( 2a + 5c = 3 \) (1) 2. \( 2b + 5d = 0 \) (2) 3. \( 3a + 8c = 43 \) (3) 4. \( 3b + 8d = 22 \) (4) ### Step 6: Solve equations (1) and (3) From equation (1): \[ 2a + 5c = 3 \implies 2a = 3 - 5c \implies a = \frac{3 - 5c}{2} \] Substituting \( a \) into equation (3): \[ 3\left(\frac{3 - 5c}{2}\right) + 8c = 43 \] Multiplying through by 2 to eliminate the fraction: \[ 3(3 - 5c) + 16c = 86 \] \[ 9 - 15c + 16c = 86 \implies c = 86 - 9 = 77 \] Now substituting \( c = 77 \) back into equation (1): \[ 2a + 5(77) = 3 \implies 2a + 385 = 3 \implies 2a = 3 - 385 = -382 \implies a = -191 \] ### Step 7: Solve equations (2) and (4) From equation (2): \[ 2b + 5d = 0 \implies 2b = -5d \implies b = -\frac{5d}{2} \] Substituting \( b \) into equation (4): \[ 3\left(-\frac{5d}{2}\right) + 8d = 22 \] Multiplying through by 2: \[ -15d + 16d = 44 \implies d = 44 \] Now substituting \( d = 44 \) back into equation (2): \[ 2b + 5(44) = 0 \implies 2b + 220 = 0 \implies 2b = -220 \implies b = -110 \] ### Final Step: Write the matrix \( D \) Thus, we have: \[ D = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -191 & -110 \\ 77 & 44 \end{pmatrix} \] ### Summary of the Solution The matrix \( D \) is: \[ D = \begin{pmatrix} -191 & -110 \\ 77 & 44 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

Given A=[{:(,3,-2),(,-1,4):}], B=[{:(,6),(,1):}], C=[{:(,-4),(,-5):}] and D=[{:(,2),(,2):}] . Find AB+2C-4D

A=[{:(2,4),(3,2):}],B=[{:(1,3),(-2,5):}],C=[{:(-2,5),(3,4):}] find each of the following : (i) A+B (ii) A-B (iii) 3A-C (iv) AB (V) BA

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(,5,0),(,7,3):}] find the values of a,b and c.

If A = [{:( 1, 2),(3,-4):}] B= [{:( 2,-7),( 5, 8) :}] and C = [{:( 1,5),(0,2):}] then show that A+B-C = [{:( 2,-10),(8 , 2):}]

If A= [{:(,1,2),(,3,-4),(,5,6):}]and B=[{:(,4,5,6),(,7,-8,2):}] will AB be equal to BA. Also find AB & BA.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[(2, 3),( 5 ,7)] , B=[(-1 ,0, 2),( 3, 4, 1)] , C=[(-1, 2 ,3),( 2 ,1, 0)] , find A+B and B+C (ii) 2B+3A and 3C-4B .

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).