Home
Class 12
MATHS
Let A+B+C=[{:(,4,-1),(,0,1):}],4A+2B+C=[...

Let A+B+C=`[{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have three equations involving matrices A, B, and C. We need to find the matrix A given the equations: 1. \( A + B + C = \begin{pmatrix} 4 & -1 \\ 0 & 1 \end{pmatrix} \) 2. \( 4A + 2B + C = \begin{pmatrix} 0 & -1 \\ -3 & 2 \end{pmatrix} \) 3. \( 9A + 3B + C = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix} \) Let's denote: - \( X = \begin{pmatrix} 4 & -1 \\ 0 & 1 \end{pmatrix} \) - \( Y = \begin{pmatrix} 0 & -1 \\ -3 & 2 \end{pmatrix} \) - \( Z = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix} \) ### Step 1: Set up the equations We have the following equations: 1. \( A + B + C = X \) (Equation 1) 2. \( 4A + 2B + C = Y \) (Equation 2) 3. \( 9A + 3B + C = Z \) (Equation 3) ### Step 2: Subtract Equation 1 from Equation 2 Subtracting Equation 1 from Equation 2: \[ (4A + 2B + C) - (A + B + C) = Y - X \] This simplifies to: \[ 3A + B = Y - X \] Calculating \( Y - X \): \[ Y - X = \begin{pmatrix} 0 & -1 \\ -3 & 2 \end{pmatrix} - \begin{pmatrix} 4 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 - 4 & -1 + 1 \\ -3 - 0 & 2 - 1 \end{pmatrix} = \begin{pmatrix} -4 & 0 \\ -3 & 1 \end{pmatrix} \] Thus, we have: \[ 3A + B = \begin{pmatrix} -4 & 0 \\ -3 & 1 \end{pmatrix} \quad (Equation 4) \] ### Step 3: Subtract Equation 2 from Equation 3 Now, subtracting Equation 2 from Equation 3: \[ (9A + 3B + C) - (4A + 2B + C) = Z - Y \] This simplifies to: \[ 5A + B = Z - Y \] Calculating \( Z - Y \): \[ Z - Y = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 0 - 0 & 2 + 1 \\ 2 + 3 & 1 - 2 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 5 & -1 \end{pmatrix} \] Thus, we have: \[ 5A + B = \begin{pmatrix} 0 & 3 \\ 5 & -1 \end{pmatrix} \quad (Equation 5) \] ### Step 4: Subtract Equation 4 from Equation 5 Now, subtract Equation 4 from Equation 5: \[ (5A + B) - (3A + B) = \begin{pmatrix} 0 & 3 \\ 5 & -1 \end{pmatrix} - \begin{pmatrix} -4 & 0 \\ -3 & 1 \end{pmatrix} \] This simplifies to: \[ 2A = \begin{pmatrix} 0 + 4 & 3 - 0 \\ 5 + 3 & -1 - 1 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 8 & -2 \end{pmatrix} \] ### Step 5: Solve for A Now, divide both sides by 2: \[ A = \frac{1}{2} \begin{pmatrix} 4 & 3 \\ 8 & -2 \end{pmatrix} = \begin{pmatrix} 2 & \frac{3}{2} \\ 4 & -1 \end{pmatrix} \] ### Final Answer Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 2 & \frac{3}{2} \\ 4 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

Let A=[{:(,5,4),(,3,-2):}], B=[{:(,-3,0),(,1,4):}] and C=[{:(,1,-3),(,0,2):}], find : (i) A+B and B+A (ii) (A+B)+C and A+(B+C) (iii) Is A+B=B+A? (iv) Is (A+B) +C=A+(B+C)?

If A=[{:(,5,4),(,3,-1):}], B=[{:(,2,1),(,0,4):}] and C=[{:(,-3,2),(,1,0):}] , find : (i) A+C (ii) B-A (iii) A+B-C

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

Given, A=[{:(1,3,5),(-2,0,2),(0,0,-3):}], B = [{:(0,3),(-2,0),(0,-4):}] and C=[{:(4,1,-2),(3,2,1),(2,-1,7):}], find (whichever defined) (i)A+B. (ii)A+C.