Home
Class 12
MATHS
If A=[{:(,1,2),(,3,-4),(,5,6):}]and B=[{...

If A=`[{:(,1,2),(,3,-4),(,5,6):}]and B=[{:(,4,5,6),(,7,-8,2):}]` will AB be equal to BA. Also find AB & BA.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether \( AB \) is equal to \( BA \) for the given matrices \( A \) and \( B \), we first need to calculate both products. ### Given Matrices: \[ A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \end{bmatrix} \] \[ B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 2 \end{bmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) by matrix \( B \). The resulting matrix will be a \( 2 \times 3 \) matrix. \[ AB = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 2 \end{bmatrix} \] Calculating each element of \( AB \): - First row, first column: \[ 1 \cdot 4 + 2 \cdot 7 = 4 + 14 = 18 \] - First row, second column: \[ 1 \cdot 5 + 2 \cdot (-8) = 5 - 16 = -11 \] - First row, third column: \[ 1 \cdot 6 + 2 \cdot 2 = 6 + 4 = 10 \] - Second row, first column: \[ -4 \cdot 4 + 5 \cdot 7 = -16 + 35 = 19 \] - Second row, second column: \[ -4 \cdot 5 + 5 \cdot (-8) = -20 - 40 = -60 \] - Second row, third column: \[ -4 \cdot 6 + 5 \cdot 2 = -24 + 10 = -14 \] Thus, we have: \[ AB = \begin{bmatrix} 18 & -11 & 10 \\ 19 & -60 & -14 \end{bmatrix} \] ### Step 2: Calculate \( BA \) Now, we calculate \( BA \) by multiplying matrix \( B \) by matrix \( A \). The resulting matrix will be a \( 3 \times 2 \) matrix. \[ BA = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \end{bmatrix} \] Calculating each element of \( BA \): - First row, first column: \[ 4 \cdot 1 + 5 \cdot (-4) = 4 - 20 = -16 \] - First row, second column: \[ 4 \cdot 2 + 5 \cdot 5 = 8 + 25 = 33 \] - Second row, first column: \[ 7 \cdot 1 + (-8) \cdot (-4) = 7 + 32 = 39 \] - Second row, second column: \[ 7 \cdot 2 + (-8) \cdot 5 = 14 - 40 = -26 \] - Third row, first column: \[ 6 \cdot 1 + 2 \cdot (-4) = 6 - 8 = -2 \] - Third row, second column: \[ 6 \cdot 2 + 2 \cdot 5 = 12 + 10 = 22 \] Thus, we have: \[ BA = \begin{bmatrix} -16 & 33 \\ 39 & -26 \\ -2 & 22 \end{bmatrix} \] ### Conclusion Now we can summarize the results: \[ AB = \begin{bmatrix} 18 & -11 & 10 \\ 19 & -60 & -14 \end{bmatrix} \] \[ BA = \begin{bmatrix} -16 & 33 \\ 39 & -26 \\ -2 & 22 \end{bmatrix} \] Since \( AB \) is a \( 2 \times 3 \) matrix and \( BA \) is a \( 3 \times 2 \) matrix, they cannot be equal. Therefore, \( AB \neq BA \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Find AB and BA ( if it exist)

If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) (ii) (AB) B.

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}] , is (AB)=B'A'?

If A=[{:(2,3,-1),(1,4,2):}] and B=[{:(2,3),(4,5),(2,1):}] then AB and BA are defined and equal.

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

If A=[[1,2],[3,-4],[5,6]] and B=[[4,5,6],[7,-8,2]] , is AB=BA? Also find AB and BA.

If A={1,2,3,4,5,6) and B={2,4,5,6,8,9,10} then A DeltaB is equal to