Home
Class 12
MATHS
Given that F(x)=[{:(,cos x,-sin x,0),(,s...

Given that `F(x)=[{:(,cos x,-sin x,0),(,sin x,cos x,0),(,0,0,1):}]."If"in R` Then for what values of y, `F(x+y)=F(x)F(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( F(x+y) = F(x)F(y) \) for certain values of \( y \). Let's break down the solution step by step. ### Step 1: Define the function \( F(x) \) Given: \[ F(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Find \( F(y) \) To find \( F(y) \), we replace \( x \) with \( y \): \[ F(y) = \begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Find \( F(x+y) \) Next, we compute \( F(x+y) \) by replacing \( x \) with \( x+y \): \[ F(x+y) = \begin{pmatrix} \cos(x+y) & -\sin(x+y) & 0 \\ \sin(x+y) & \cos(x+y) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Compute \( F(x)F(y) \) Now, we need to multiply \( F(x) \) and \( F(y) \): \[ F(x)F(y) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Perform the matrix multiplication Calculating the product: 1. The first row, first column: \[ \cos x \cos y + (-\sin x)(\sin y) = \cos x \cos y - \sin x \sin y \] 2. The first row, second column: \[ \cos x (-\sin y) + (-\sin x)(\cos y) = -\cos x \sin y - \sin x \cos y \] 3. The second row, first column: \[ \sin x \cos y + \cos x \sin y = \sin x \cos y + \cos x \sin y \] 4. The second row, second column: \[ \sin x (-\sin y) + \cos x \cos y = -\sin x \sin y + \cos x \cos y \] 5. The third row remains: \[ \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \] Thus, we have: \[ F(x)F(y) = \begin{pmatrix} \cos x \cos y - \sin x \sin y & -(\cos x \sin y + \sin x \cos y) & 0 \\ \sin x \cos y + \cos x \sin y & \cos x \cos y - \sin x \sin y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 6: Compare \( F(x+y) \) and \( F(x)F(y) \) Using the angle addition formulas: - \( \cos(x+y) = \cos x \cos y - \sin x \sin y \) - \( \sin(x+y) = \sin x \cos y + \cos x \sin y \) We can rewrite \( F(x+y) \) as: \[ F(x+y) = \begin{pmatrix} \cos(x+y) & -\sin(x+y) & 0 \\ \sin(x+y) & \cos(x+y) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Conclusion Since \( F(x+y) = F(x)F(y) \) holds true for all \( x \) and \( y \), we conclude that the equation is valid for all \( y \in \mathbb{R} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

find the value for x F(x)=|[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]|

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[ 0, 0, 1]] , show that F(x) F(y) = F(x + y) .

Let F(x)= [cosx -sinx 0 sinx cosx 0 0 0 1] . Show that F(x)\ F(y)=F(x+y)

Let f(x)=|[cos(x+x^2),sin(x+x^2),-cos(x+x^2)],[sin(x-x^2),cos(x-x^2), sin(x-x^2)],[sin2x,0,sin(2x^2)]| . Find the value of f^(prime)(0) .

Find The Derivative 0f y=e^(x)sin x cos x

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|. Find the value of f'(0).

Show that function f(x) given by f(x)={(x sin(1/x),,,x ne 0),(0,,,x=0):} is continuous at x=0