Home
Class 12
MATHS
If C=[{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{...

If C=`[{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{:(,0,2,3),(,-2,0,4),(,-3,-4,0):}] [{:(,1,7,9),(,4,2,8),(,6,5,3):}]` Then trace of `C+C^(3)+C^(5)+……+C^(99)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the trace of the matrix \( C + C^3 + C^5 + \ldots + C^{99} \). Let's break it down step by step. ### Step 1: Define the Matrix \( C \) The matrix \( C \) is defined as the product of three matrices: 1. \( A = \begin{pmatrix} 1 & 4 & 6 \\ 7 & 2 & 5 \\ 9 & 8 & 3 \end{pmatrix} \) 2. \( B = \begin{pmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{pmatrix} \) 3. \( D = \begin{pmatrix} 1 & 4 & 6 \\ 7 & 2 & 5 \\ 9 & 8 & 3 \end{pmatrix} \) ### Step 2: Calculate the Product \( C = A \cdot B \cdot D \) First, we need to calculate \( C = A \cdot B \). #### Multiplying Matrices \( A \) and \( B \) Using the matrix multiplication rule, we calculate each entry of the resulting matrix \( C \): 1. **First Row**: - First column: \( 1 \cdot 0 + 4 \cdot (-2) + 6 \cdot (-3) = 0 - 8 - 18 = -26 \) - Second column: \( 1 \cdot 2 + 4 \cdot 0 + 6 \cdot (-4) = 2 + 0 - 24 = -22 \) - Third column: \( 1 \cdot 3 + 4 \cdot 4 + 6 \cdot 0 = 3 + 16 + 0 = 19 \) 2. **Second Row**: - First column: \( 7 \cdot 0 + 2 \cdot (-2) + 5 \cdot (-3) = 0 - 4 - 15 = -19 \) - Second column: \( 7 \cdot 2 + 2 \cdot 0 + 5 \cdot (-4) = 14 + 0 - 20 = -6 \) - Third column: \( 7 \cdot 3 + 2 \cdot 4 + 5 \cdot 0 = 21 + 8 + 0 = 29 \) 3. **Third Row**: - First column: \( 9 \cdot 0 + 8 \cdot (-2) + 3 \cdot (-3) = 0 - 16 - 9 = -25 \) - Second column: \( 9 \cdot 2 + 8 \cdot 0 + 3 \cdot (-4) = 18 + 0 - 12 = 6 \) - Third column: \( 9 \cdot 3 + 8 \cdot 4 + 3 \cdot 0 = 27 + 32 + 0 = 59 \) Thus, we have: \[ C = \begin{pmatrix} -26 & -22 & 19 \\ -19 & -6 & 29 \\ -25 & 6 & 59 \end{pmatrix} \] ### Step 3: Calculate the Trace of Matrix \( C \) The trace of a matrix is the sum of its diagonal elements. For matrix \( C \): \[ \text{Trace}(C) = -26 + (-6) + 59 = 27 \] ### Step 4: Calculate the Trace of Higher Powers of \( C \) Next, we need to find the trace of \( C^3, C^5, \ldots, C^{99} \). #### Property of Trace A key property of the trace is that if \( \text{Trace}(C) = 0 \), then \( \text{Trace}(C^n) = 0 \) for any positive integer \( n \). Since we found that \( \text{Trace}(C) \) is not zero, we need to check if \( C^3, C^5, \ldots, C^{99} \) also yields a trace of zero. However, since \( C \) is not a zero matrix, we can conclude that the trace of each of these powers will also not be zero. ### Step 5: Sum the Traces We need to sum the traces: \[ \text{Trace}(C + C^3 + C^5 + \ldots + C^{99}) = \text{Trace}(C) + \text{Trace}(C^3) + \text{Trace}(C^5) + \ldots + \text{Trace}(C^{99}) \] Since we established that each of these traces will be equal to the trace of \( C \), we can conclude that: \[ \text{Trace}(C + C^3 + C^5 + \ldots + C^{99}) = 0 \] ### Final Answer The trace of \( C + C^3 + C^5 + \ldots + C^{99} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(3,2,1),(1,2,3),(3,-6,1):}],B=[{:(1,4,0),(2,-3,0),(1,2,0):}] and C=[{:(1,2,3),(3,2,1),(8,7,9):}], then find AB-AC.

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

If [{:(,a,3),(,4,1):}]+[{:(,2,b),(,1,-2):}]-[{:(,1,1),(,-2,c):}] =[{:(,5,0),(,7,3):}] find the values of a,b and c.

If A=[{:(,3,7),(,2,4):}], B=[{:(,0,2),(,5,3):}] and C=[{:(,1,-5),(,-4,6):}] Find AB-5C.

If A=[{:(,2,-1),(,3,4):}]=B=[{:(,5,2),(,7,4):}],C=[{:(,2,5),(,3,8):}] and AB-CD=0 find D.

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is

Wherever possible write each of the following as a single matrix. (i) [{:(,1,2),(,3,4):}]+[{:(,-1,-2),(,1,-7):}] (ii) [{:(,2,3,4),(,5,6,7):}]-[{:(,0,2,3),(,6,-1,0):}] (iii) [{:(,0,1,2),(,4,6,7):}]+[{:(,3,4),(,6,8):}]