Home
Class 12
MATHS
Using the properties of detminants, eval...

Using the properties of detminants, evalulate. (i) `|{:(,23,6,11),(,36,5,26),(,63,13,37):}|` (ii) `|{:(,sqrt13+sqrt3,2sqrt5,sqrt5),(,sqrt15+sqrt26,5,sqrt10),(,3+sqrt65,sqrt15,5):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinants, we will use properties of determinants step by step. ### Part (i) We need to evaluate the determinant: \[ D_1 = \begin{vmatrix} 23 & 6 & 11 \\ 36 & 5 & 26 \\ 63 & 13 & 37 \end{vmatrix} \] **Step 1:** We can perform column operations to simplify the determinant. Let's modify the first column \(C_1\): \[ C_1 \rightarrow C_1 - 2C_2 - C_3 \] Calculating the new entries for \(C_1\): - For the first row: \(23 - 2 \cdot 6 - 11 = 23 - 12 - 11 = 0\) - For the second row: \(36 - 2 \cdot 5 - 26 = 36 - 10 - 26 = 0\) - For the third row: \(63 - 2 \cdot 13 - 37 = 63 - 26 - 37 = 0\) So, the modified determinant becomes: \[ D_1 = \begin{vmatrix} 0 & 6 & 11 \\ 0 & 5 & 26 \\ 0 & 13 & 37 \end{vmatrix} \] **Step 2:** Now, we see that the first column is entirely zero. According to the properties of determinants, if any row or column is entirely zero, the determinant is zero. Thus, we have: \[ D_1 = 0 \] ### Part (ii) Now we evaluate the second determinant: \[ D_2 = \begin{vmatrix} \sqrt{13} + \sqrt{3} & 2\sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{26} & 5 & \sqrt{10} \\ 3 + \sqrt{65} & \sqrt{15} & 5 \end{vmatrix} \] **Step 1:** We can also perform column operations here. Let's denote the columns as \(C_1\), \(C_2\), and \(C_3\). We can simplify by taking common factors out of the columns. Taking \(\sqrt{3}\) from \(C_1\), \(\sqrt{5}\) from \(C_2\), and \(\sqrt{5}\) from \(C_3\): \[ D_2 = \sqrt{3} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \begin{vmatrix} 1 & 2\sqrt{5} & \sqrt{5} \\ \frac{\sqrt{15} + \sqrt{26}}{\sqrt{3}} & 5 & \frac{\sqrt{10}}{\sqrt{5}} \\ \frac{3 + \sqrt{65}}{\sqrt{3}} & \sqrt{15} & 5 \end{vmatrix} \] **Step 2:** Now, we can simplify the determinant further. We can perform the operation \(C_2 \rightarrow C_2 - C_1\): \[ D_2 = \sqrt{3} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \begin{vmatrix} 1 & 2\sqrt{5} - 1 & \sqrt{5} \\ \frac{\sqrt{15} + \sqrt{26}}{\sqrt{3}} & 5 - \frac{\sqrt{15} + \sqrt{26}}{\sqrt{3}} & \frac{\sqrt{10}}{\sqrt{5}} \\ \frac{3 + \sqrt{65}}{\sqrt{3}} & \sqrt{15} - \frac{3 + \sqrt{65}}{\sqrt{3}} & 5 \end{vmatrix} \] **Step 3:** After simplifying, we notice that two columns become identical, which implies that the determinant is zero. Thus, we have: \[ D_2 = 0 \] ### Final Answers (i) \(D_1 = 0\) (ii) \(D_2 = 0\)
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-1|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

2sqrt5 - sqrt5 = sqrt5

Find the value of the "determinant" |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

(iii) (sqrt 5+ sqrt 3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) =?

Simplify (sqrt5-sqrt2)(sqrt5+sqrt2)

(sqrt15+sqrt35+sqrt21+5)/(sqrt3+2sqrt5+sqrt7)=?

Find (sqrt 3 - sqrt 5)(sqrt 5+ sqrt3)

Find : (sqrt5+sqrt2)(sqrt3+sqrt2)

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

RESONANCE ENGLISH-MATRICES & DETERMINANT-SECTION-B
  1. If minor of three-one element (i.e.M(31)) in the determinant [{:(,0,1,...

    Text Solution

    |

  2. Using the properties of detminants, evalulate. (i) |{:(,23,6,11),(,36...

    Text Solution

    |

  3. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. The value of |(a(1) x(1) + b(1) y(1),a(1) x(2) + b(1) y(2),a(1) x(3) +...

    Text Solution

    |

  8. If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find...

    Text Solution

    |

  9. If A and B are squar matrices of order 3 such that |A|=-1, |B|=3 then ...

    Text Solution

    |

  10. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  11. Find the value of the determinant |{:(-1,2,1),(3+2sqrt(2),2+2sqrt(2)...

    Text Solution

    |

  12. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  13. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  14. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  15. The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...

    Text Solution

    |

  16. If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x...

    Text Solution

    |

  17. if determinant |{:( cos (0 + phi),,-sin (0+phi),,cos 2phi),(sin 0,,cos...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |