Home
Class 12
MATHS
For the matrix A=[{:(,3,2),(,1,1):}] Fin...

For the matrix `A=[{:(,3,2),(,1,1):}]` Find a & b so that `A^(2)+aA+bI=0`. Hence find `A^(-1)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[[3 ,1],[ 7, 5]], find x and y sot that A^2+x I+y Adot=0 Hence, Find A^(-1)dot

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

For the matrix A= [[3,2],[1,1]] , find the numbers a and b such that A^2+aA+bI=O .

For the matrix A=[[3, 2],[ 1, 1]] , find the numbers a and b such that A^2+a A+b I=O . Hence, find A^(-1) .

For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I_3=O . Hence, find A^(-1) .

If a matrix A=((3,2,0),(1,4,0),(0,0,5)) show that A^2-7A+10I_(3) = 0 and hence find A^(-1)

Find the matrix A, if B=[{:(,2,1),(,0,1):}] and B^2=B+1/2A .

If A=[(3,-2),( 4,-2)] , find the value of lambda so that A^2=lambdaA-2Idot Hence, find A^(-1) .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

find the transpore of matrix A=[{:(2,0),(-1,4):}].