Home
Class 12
MATHS
Find the non-zero roots of the equation....

Find the non-zero roots of the equation.
`(i) Delta=|{:(,a,b,ax+b),(,b,c,bx+c),(,ax+b,bx+c,c):}|=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the non-zero roots of the equation given by the determinant of the matrix: \[ \Delta = \begin{vmatrix} a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & c \end{vmatrix} = 0 \] we will follow these steps: ### Step 1: Write down the determinant We start with the determinant of the matrix: \[ \Delta = \begin{vmatrix} a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & c \end{vmatrix} \] ### Step 2: Apply column operations We will perform column operations to simplify the determinant. Multiply the first column by \(x\): \[ C_1 \rightarrow xC_1 \] This modifies the matrix to: \[ \begin{vmatrix} ax & b & ax + b \\ bx & c & bx + c \\ ax + b & bx + c & c \end{vmatrix} \] ### Step 3: Further simplify using column operations Next, we will perform the operation \(C_3 \rightarrow C_3 - C_1 + C_2\): \[ C_3 \rightarrow C_3 - C_1 + C_2 \] This results in: \[ \begin{vmatrix} ax & b & b \\ bx & c & c - b \\ ax + b & bx + c & 0 \end{vmatrix} \] ### Step 4: Expand the determinant Now we can expand the determinant along the third column: \[ \Delta = b \begin{vmatrix} ax & b \\ bx & c \end{vmatrix} + (c - b) \begin{vmatrix} ax & b \\ ax + b & bx + c \end{vmatrix} \] ### Step 5: Calculate the 2x2 determinants Calculating the first determinant: \[ \begin{vmatrix} ax & b \\ bx & c \end{vmatrix} = (ax)(c) - (b)(bx) = acx - b^2x \] Calculating the second determinant: \[ \begin{vmatrix} ax & b \\ ax + b & bx + c \end{vmatrix} = (ax)(bx + c) - (b)(ax + b) = abx^2 + acx - abx - b^2 = abx^2 + (ac - ab)x - b^2 \] ### Step 6: Substitute back into the determinant Substituting back into the determinant gives: \[ \Delta = b(acx - b^2x) + (c - b)(abx^2 + (ac - ab)x - b^2) \] ### Step 7: Set the determinant to zero Setting \(\Delta = 0\): \[ b(acx - b^2x) + (c - b)(abx^2 + (ac - ab)x - b^2) = 0 \] ### Step 8: Factor out common terms This simplifies to: \[ x \left( b(ac - b^2) + (c - b)(abx + (ac - ab)) \right) = 0 \] ### Step 9: Solve for non-zero roots The non-zero roots can be found from: \[ b(ac - b^2) + (c - b)(abx + (ac - ab)) = 0 \] This leads to: \[ abx + (ac - ab) = 0 \implies x = -\frac{(ac - ab)}{ab} \] ### Final Answer The non-zero root is: \[ x = -\frac{(ac - ab)}{ab} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-1|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If a^(2) + b^(2) = c^(2), c != 0 , then find the non-zero solution of the equation: sin^(-1).(ax)/(c) + sin^(-1).(bx)/(c) = sin^(-1) x

If both the roots of the equation ax^(2) + bx + c = 0 are zero, then

If sin theta and -cos theta are the roots of the equation ax^(2) - bx - c = 0 , where a, b, and c are the sides of a triangle ABC, then cos B is equal to

Let alpha , beta (a lt b) be the roots of the equation ax^(2)+bx+c=0 . If lim_(xtom) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1 then

If alpha,beta are the roots of the equation ax^2 + bx+c=0 then the roots of the equation (a + b + c)x^2-(b + 2c)x+c=0 are (a) c (b) d-c (c) 2c (d) 0

If alpha and beta are the roots of the equation ax ^(2) + bx + c=0,a,b, c in R , alpha ne 0 then which is (are) correct:

Assertion (A): The roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are 1, (c(a-b))/(a(b-c)) Reason (R): If a+b+c=0 then the roots of ax^(2)+bx+c=0 are 1, (c)/(a)

If alpha and beta , alpha and gamma , alpha and delta are the roots of the equations ax^(2)+2bx+c=0 , 2bx^(2)+cx+a=0 and cx^(2)+ax+2b=0 respectively where a , b , c are positive real numbers, then alpha+alpha^(2) is equal to

If the roots of the equation ax^(2)+bx+c=0 be in the ratio 3:4, show that 12b^(2)=49ac .

RESONANCE ENGLISH-MATRICES & DETERMINANT-SECTION-B
  1. If minor of three-one element (i.e.M(31)) in the determinant [{:(,0,1,...

    Text Solution

    |

  2. Using the properties of detminants, evalulate. (i) |{:(,23,6,11),(,36...

    Text Solution

    |

  3. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. The value of |(a(1) x(1) + b(1) y(1),a(1) x(2) + b(1) y(2),a(1) x(3) +...

    Text Solution

    |

  8. If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find...

    Text Solution

    |

  9. If A and B are squar matrices of order 3 such that |A|=-1, |B|=3 then ...

    Text Solution

    |

  10. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  11. Find the value of the determinant |{:(-1,2,1),(3+2sqrt(2),2+2sqrt(2)...

    Text Solution

    |

  12. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  13. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  14. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  15. The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...

    Text Solution

    |

  16. If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x...

    Text Solution

    |

  17. if determinant |{:( cos (0 + phi),,-sin (0+phi),,cos 2phi),(sin 0,,cos...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |