Home
Class 12
MATHS
If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}...

If `[{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+.......` then find the value of A and B.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the values of A and B from the expression given by the determinant of the matrix: \[ \begin{vmatrix} e^x & \sin x \\ \cos x & \ln(1+x) \end{vmatrix} \] This determinant can be calculated as follows: ### Step 1: Calculate the Determinant The determinant of a 2x2 matrix is given by: \[ \text{det}(A) = ad - bc \] For our matrix, we have: - \( a = e^x \) - \( b = \sin x \) - \( c = \cos x \) - \( d = \ln(1+x) \) Thus, the determinant is: \[ \text{det}(A) = e^x \cdot \ln(1+x) - \sin x \cdot \cos x \] ### Step 2: Expand the Terms Next, we will expand \( e^x \) and \( \ln(1+x) \) using their Taylor series expansions around \( x = 0 \): 1. **Expansion of \( e^x \)**: \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots \] 2. **Expansion of \( \ln(1+x) \)**: \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots \] ### Step 3: Substitute the Expansions Now, substituting these expansions into the determinant: \[ \text{det}(A) = (1 + x + \frac{x^2}{2} + \ldots)(x - \frac{x^2}{2} + \ldots) - \sin x \cdot \cos x \] ### Step 4: Expand the Product Now, we will expand the product: \[ (1 + x + \frac{x^2}{2})(x - \frac{x^2}{2}) = x + x^2 - \frac{x^3}{2} + \frac{x^2}{2} - \frac{x^3}{4} + \ldots \] Combining like terms, we will focus on the coefficients of \( x \) and \( x^2 \): - The coefficient of \( x \) is \( 1 \). - The coefficient of \( x^2 \) is \( 1 - \frac{1}{2} = \frac{1}{2} \). ### Step 5: Calculate \( \sin x \cdot \cos x \) Using the expansion for \( \sin x \) and \( \cos x \): \[ \sin x = x - \frac{x^3}{6} + \ldots \] \[ \cos x = 1 - \frac{x^2}{2} + \ldots \] Thus, \[ \sin x \cdot \cos x = (x - \frac{x^3}{6})(1 - \frac{x^2}{2}) = x - \frac{x^3}{6} - \frac{x^3}{2} + \ldots \] The coefficient of \( x^2 \) from this product is \( 0 \). ### Step 6: Combine Results Now we can combine our results: \[ \text{det}(A) = (1)(x) + \left(\frac{1}{2} - 0\right)x^2 + \ldots \] ### Conclusion From the expression \( \text{det}(A) = A + Bx + Cx^2 + \ldots \): - The constant term \( A = 0 \). - The coefficient of \( x \), \( B = 0 \). Thus, the final values are: \[ \boxed{A = 0, B = 0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-1|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If (x+1)/(x^(3)+x)=A/x +(Bx+C)/(x^(2)+1) , then find the principal value of sin^(-1)(A/B) .

If (d)/(dx)((1+x^2+x^4)/(1+x+x^2)) = a+bx , find the values of a and b .

If f(x) = sin^(-1) (sin ("log"_(2) x)) , then find the value of f(300)

If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1,sinx^2))|=A+Bx+Cx^2+.... then B is equal to

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

Let x in (0, pi/2) and log_(24 sin x) (24 cos x)=3/2 , then find the value of cosec^(2)x .

Resolve into Partial Fractions If (1)/(x^(3)(x+3))=(1)/(Ax) - (1)/(Bx^(2))+(1)/(Cx^(3))-(1)/(D(x+3)) then find the values of A, B, C and D.

If x satisfies the cubic equation ax^(3)+bx^(2)+cx+d=0 such that cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi , then find the value of (b+c)-(a+d) .

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

RESONANCE ENGLISH-MATRICES & DETERMINANT-SECTION-B
  1. If minor of three-one element (i.e.M(31)) in the determinant [{:(,0,1,...

    Text Solution

    |

  2. Using the properties of detminants, evalulate. (i) |{:(,23,6,11),(,36...

    Text Solution

    |

  3. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. The value of |(a(1) x(1) + b(1) y(1),a(1) x(2) + b(1) y(2),a(1) x(3) +...

    Text Solution

    |

  8. If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find...

    Text Solution

    |

  9. If A and B are squar matrices of order 3 such that |A|=-1, |B|=3 then ...

    Text Solution

    |

  10. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  11. Find the value of the determinant |{:(-1,2,1),(3+2sqrt(2),2+2sqrt(2)...

    Text Solution

    |

  12. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  13. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  14. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  15. The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...

    Text Solution

    |

  16. If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x...

    Text Solution

    |

  17. if determinant |{:( cos (0 + phi),,-sin (0+phi),,cos 2phi),(sin 0,,cos...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |