Home
Class 12
MATHS
If I=[{:(,1,0),(,0,1):}], J=[{:(,0,1),(,...

If I=`[{:(,1,0),(,0,1):}], J=[{:(,0,1),(,-1,0):}]and B=[{:(,cos theta,sin theta),(,-sin theta,cos theta)]:}"then B"=`

A

`Icos theta+J sin theta`

B

`Icostheta-Jsintheta`

C

`I sin theta+Jcos theta`

D

`-Icos theta+Jsin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the matrix \( B \) in terms of the identity matrix \( I \) and the matrix \( J \). Let's go through the steps systematically. ### Step 1: Define the matrices We have the following matrices defined: - Identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) - Matrix \( J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) - Matrix \( B = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \) ### Step 2: Express \( B \) in terms of \( I \) and \( J \) We want to express \( B \) in the form: \[ B = aI + bJ \] where \( a \) and \( b \) are scalars. ### Step 3: Write the expression for \( aI + bJ \) Substituting the matrices into the expression, we have: \[ aI + bJ = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \] This simplifies to: \[ = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \] ### Step 4: Set the matrices equal to each other Now we set this equal to matrix \( B \): \[ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 5: Equate corresponding elements From the equality of the matrices, we can derive the following equations: 1. \( a = \cos \theta \) 2. \( b = \sin \theta \) 3. \( -b = -\sin \theta \) (which is consistent with \( b = \sin \theta \)) 4. \( a = \cos \theta \) (which is consistent with the first equation) ### Step 6: Substitute back to find \( B \) Now substituting the values of \( a \) and \( b \) back into the expression for \( B \): \[ B = aI + bJ = \cos \theta I + \sin \theta J \] Thus, we can express \( B \) as: \[ B = \cos \theta I + \sin \theta J \] ### Conclusion The correct representation of matrix \( B \) is: \[ B = I \cdot \cos \theta + J \cdot \sin \theta \] ### Final Answer The correct option is: 1. \( B = I \cdot \cos \theta + J \cdot \sin \theta \) ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

sin theta -cos theta=0

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

(1)/(sin theta)+(1)/(cos theta)=

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Solve sin 2 theta+cos theta=0 .

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Prove : (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II
  1. [{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,-x+1,x):}]=[{:(,0,-2),(,5,1):}...

    Text Solution

    |

  2. If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"th...

    Text Solution

    |

  3. If I=[{:(,1,0),(,0,1):}], J=[{:(,0,1),(,-1,0):}]and B=[{:(,cos theta,s...

    Text Solution

    |

  4. A matrix A=[a(ij)] is an upper triangular matrix, if

    Text Solution

    |

  5. If A=diag(2,-1,3), B=diag(-1,3,2) then A^(2)B

    Text Solution

    |

  6. If A is skew-symmetric matrix, then trace of A is

    Text Solution

    |

  7. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  8. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I i...

    Text Solution

    |

  9. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  10. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  11. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  12. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  13. If a(1), a(2), a(3), 5, 4, a(6), a(7), a(8), a(9) are in H.P. and the ...

    Text Solution

    |

  14. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  15. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  16. Suppose A is a matrix such that A^2 =A and (I + A)^6 =I+ KA, then K is...

    Text Solution

    |

  17. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  18. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  19. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  20. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |