Home
Class 12
MATHS
Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(...

Let `A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)]`
where I is the `(2xx2` identity matrix). Then the product of all elements of matrix V is

A

2

B

1

C

3

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined approach in the video transcript. ### Step 1: Define the Matrix A Let \( A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \). ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \] Calculating this gives: \[ A^2 = \begin{pmatrix} 0 \cdot 0 + 1 \cdot 2 & 0 \cdot 1 + 1 \cdot 0 \\ 2 \cdot 0 + 0 \cdot 2 & 2 \cdot 1 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] ### Step 3: Calculate \( A^4 \) Next, we find \( A^4 \) by squaring \( A^2 \): \[ A^4 = A^2 \cdot A^2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] Calculating this gives: \[ A^4 = \begin{pmatrix} 2 \cdot 2 + 0 \cdot 0 & 2 \cdot 0 + 0 \cdot 2 \\ 0 \cdot 2 + 2 \cdot 0 & 0 \cdot 0 + 2 \cdot 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \] ### Step 4: Calculate \( A^6 \) Now, we find \( A^6 \) by multiplying \( A^4 \) by \( A^2 \): \[ A^6 = A^4 \cdot A^2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] Calculating this gives: \[ A^6 = \begin{pmatrix} 4 \cdot 2 & 0 \\ 0 & 4 \cdot 2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} \] ### Step 5: Calculate \( A^8 \) Next, we find \( A^8 \) by squaring \( A^4 \): \[ A^8 = A^4 \cdot A^4 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \] Calculating this gives: \[ A^8 = \begin{pmatrix} 4 \cdot 4 & 0 \\ 0 & 4 \cdot 4 \end{pmatrix} = \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix} \] ### Step 6: Set Up the Equation Now we need to calculate \( A^8 + A^6 + A^2 + I \), where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ A^8 + A^6 + A^2 + I = \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix} + \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Calculating this gives: \[ = \begin{pmatrix} 16 + 8 + 2 + 1 & 0 \\ 0 & 16 + 8 + 2 + 1 \end{pmatrix} = \begin{pmatrix} 27 & 0 \\ 0 & 27 \end{pmatrix} \] ### Step 7: Solve for V We know that: \[ (A^8 + A^6 + A^2 + I)V = \begin{pmatrix} 32 \\ 62 \end{pmatrix} \] Substituting the matrix we calculated: \[ \begin{pmatrix} 27 & 0 \\ 0 & 27 \end{pmatrix} V = \begin{pmatrix} 32 \\ 62 \end{pmatrix} \] Let \( V = \begin{pmatrix} x \\ y \end{pmatrix} \). Then we have: \[ 27x = 32 \quad \text{and} \quad 27y = 62 \] Solving for \( x \) and \( y \): \[ x = \frac{32}{27}, \quad y = \frac{62}{27} \] ### Step 8: Calculate the Product of Elements in V Now, we find the product of all elements in \( V \): \[ \text{Product} = x \cdot y = \left(\frac{32}{27}\right) \cdot \left(\frac{62}{27}\right) = \frac{32 \cdot 62}{27 \cdot 27} = \frac{1984}{729} \] ### Final Answer The product of all elements of matrix \( V \) is \( \frac{1984}{729} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r eIi s the 2xx2 identity matrix ), then the product of all elements of matrix V is _____.

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

If A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[11]], where V is a vertical vector and I is the 2xx2 identity matrix and if lambda is sum of all elements of vertical vector V , the value of 11 lambda is

if for a matrix A, A^2+I=O , where I is the identity matrix, then A equals

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

Let A=[[0, 1],[ 0, 0]] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .

If A=[{:(,2,1,-1),(,0,1,-2):}] find: (i) A^(t).A (ii) A.A^(t) where A^t is the transpose of matrix A.

For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal to (where, I is the identity matrix of the same order of matrix A)

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I, where i is a 2 xx 2 identity matrix, Tr(A) i= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1:Tr(A)=0 Statement 2: |A| =1

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II
  1. If A is skew-symmetric matrix, then trace of A is

    Text Solution

    |

  2. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  3. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I i...

    Text Solution

    |

  4. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  5. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  6. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  7. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  8. If a(1), a(2), a(3), 5, 4, a(6), a(7), a(8), a(9) are in H.P. and the ...

    Text Solution

    |

  9. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  10. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  11. Suppose A is a matrix such that A^2 =A and (I + A)^6 =I+ KA, then K is...

    Text Solution

    |

  12. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  13. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  14. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  15. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  16. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  17. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  18. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  19. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  20. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |