Home
Class 12
MATHS
Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)...

Let `A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^(- 1)x),(cos^(- 1)z,cos^(- 1)x,cos^(- 1)y)]` such that `|A| = 0`, then maximum value of `x + y + z` is

A

3

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( x + y + z \) given that the determinant of the matrix \( A \) is zero. The matrix \( A \) is defined as follows: \[ A = \begin{pmatrix} \cos^{-1} x & \cos^{-1} y & \cos^{-1} z \\ \cos^{-1} y & \cos^{-1} z & \cos^{-1} x \\ \cos^{-1} z & \cos^{-1} x & \cos^{-1} y \end{pmatrix} \] ### Step 1: Write the determinant condition We know that \( |A| = 0 \). This means that the rows (or columns) of the matrix \( A \) are linearly dependent. ### Step 2: Perform a column operation We can perform a column operation to simplify the determinant. Let's change the first column by adding the second and third columns to it: \[ \text{New Column 1} = \cos^{-1} x + \cos^{-1} y + \cos^{-1} z \] This gives us: \[ A = \begin{pmatrix} \cos^{-1} x + \cos^{-1} y + \cos^{-1} z & \cos^{-1} y & \cos^{-1} z \\ \cos^{-1} y + \cos^{-1} z + \cos^{-1} x & \cos^{-1} z & \cos^{-1} x \\ \cos^{-1} z + \cos^{-1} x + \cos^{-1} y & \cos^{-1} x & \cos^{-1} y \end{pmatrix} \] ### Step 3: Factor out the common term We can factor out \( \cos^{-1} x + \cos^{-1} y + \cos^{-1} z \) from the first column: \[ |A| = (\cos^{-1} x + \cos^{-1} y + \cos^{-1} z) \cdot |B| \] Where \( B \) is the remaining \( 2 \times 2 \) matrix formed by the other columns. Since \( |A| = 0 \), we have: \[ \cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 0 \quad \text{or} \quad |B| = 0 \] ### Step 4: Analyze the case \( \cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 0 \) The only way for \( \cos^{-1} x + \cos^{-1} y + \cos^{-1} z \) to be zero is if: \[ \cos^{-1} x = 0, \quad \cos^{-1} y = 0, \quad \cos^{-1} z = 0 \] This implies: \[ x = 1, \quad y = 1, \quad z = 1 \] ### Step 5: Calculate the maximum value of \( x + y + z \) Now, we can find the maximum value of \( x + y + z \): \[ x + y + z = 1 + 1 + 1 = 3 \] ### Conclusion Thus, the maximum value of \( x + y + z \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-1|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If x = cosec[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[cot^(-1){"sin"(tan^(-1)(cos e c(cos^(-1)a)))}] show that x = y

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b)-cos^(-1)(1/a)

Solve the equation: cos^(-1)(a/x)-cos^(-1)(b/x)=cos^(-1)(1/b) - cos^(-1)(1/a)

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

If 2(cos(x-y)+cos(y-z)+cos(z-x))=-3 , then :

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

RESONANCE ENGLISH-MATRICES & DETERMINANT-SECTION-B
  1. If minor of three-one element (i.e.M(31)) in the determinant [{:(,0,1,...

    Text Solution

    |

  2. Using the properties of detminants, evalulate. (i) |{:(,23,6,11),(,36...

    Text Solution

    |

  3. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. The value of |(a(1) x(1) + b(1) y(1),a(1) x(2) + b(1) y(2),a(1) x(3) +...

    Text Solution

    |

  8. If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find...

    Text Solution

    |

  9. If A and B are squar matrices of order 3 such that |A|=-1, |B|=3 then ...

    Text Solution

    |

  10. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  11. Find the value of the determinant |{:(-1,2,1),(3+2sqrt(2),2+2sqrt(2)...

    Text Solution

    |

  12. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  13. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  14. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  15. The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...

    Text Solution

    |

  16. If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x...

    Text Solution

    |

  17. if determinant |{:( cos (0 + phi),,-sin (0+phi),,cos 2phi),(sin 0,,cos...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |