Home
Class 12
MATHS
The determinant |(b(1)+c(1),c(1)+a(1),...

The determinant
`|(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|`

A

`[{:(,a_(1),b_(1),c_(1)),(,a_(2),b_(2),c_(2)),(,a_(3),b_(3),c_(3)):}]`

B

`2[{:(,a_(1),b_(1),c_(1)),(,a_(2),b_(2),c_(2)),(,a_(3),b_(3),c_(3)):}]`

C

`3[{:(,a_(1),b_(1),c_(1)),(,a_(2),b_(2),c_(2)),(,a_(3),b_(3),c_(3)):}]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant \[ D = \begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix} \] we will perform a series of column operations to simplify the determinant. ### Step 1: Subtract Column 2 from Column 1 We start by subtracting the second column from the first column: \[ D = \begin{vmatrix} (b_1 + c_1) - (c_1 + a_1) & c_1 + a_1 & a_1 + b_1 \\ (b_2 + c_2) - (c_2 + a_2) & c_2 + a_2 & a_2 + b_2 \\ (b_3 + c_3) - (c_3 + a_3) & c_3 + a_3 & a_3 + b_3 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} b_1 - a_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 - a_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 - a_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix} \] ### Step 2: Subtract Column 3 from Column 2 Next, we subtract the third column from the second column: \[ D = \begin{vmatrix} b_1 - a_1 & (c_1 + a_1) - (a_1 + b_1) & a_1 + b_1 \\ b_2 - a_2 & (c_2 + a_2) - (a_2 + b_2) & a_2 + b_2 \\ b_3 - a_3 & (c_3 + a_3) - (a_3 + b_3) & a_3 + b_3 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} b_1 - a_1 & c_1 - b_1 & a_1 + b_1 \\ b_2 - a_2 & c_2 - b_2 & a_2 + b_2 \\ b_3 - a_3 & c_3 - b_3 & a_3 + b_3 \end{vmatrix} \] ### Step 3: Add Column 1 and Column 2 Next, we add the first column to the second column: \[ D = \begin{vmatrix} b_1 - a_1 & (b_1 - a_1) + (c_1 - b_1) & a_1 + b_1 \\ b_2 - a_2 & (b_2 - a_2) + (c_2 - b_2) & a_2 + b_2 \\ b_3 - a_3 & (b_3 - a_3) + (c_3 - b_3) & a_3 + b_3 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} b_1 - a_1 & c_1 - a_1 & a_1 + b_1 \\ b_2 - a_2 & c_2 - a_2 & a_2 + b_2 \\ b_3 - a_3 & c_3 - a_3 & a_3 + b_3 \end{vmatrix} \] ### Step 4: Factor Out Common Terms We can factor out 2 from the first column: \[ D = 2 \begin{vmatrix} b_1 - a_1 & c_1 - a_1 & a_1 + b_1 \\ b_2 - a_2 & c_2 - a_2 & a_2 + b_2 \\ b_3 - a_3 & c_3 - a_3 & a_3 + b_3 \end{vmatrix} \] ### Step 5: Final Determinant The determinant can be expressed as: \[ D = 2 \begin{vmatrix} b_1 & c_1 & a_1 \\ b_2 & c_2 & a_2 \\ b_3 & c_3 & a_3 \end{vmatrix} \] Thus, the final result is: \[ D = 2 \cdot \text{det}(B) \] Where \( B \) is the matrix formed by \( b_i, c_i, a_i \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-1|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

suppose D= |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| and Dprime= |{:(a_(1)+pb_(1),,b_(1)+qc_(1),,c_(1)+ra_(1)),(a_(2)+pb_(2),,b_(2)+qc_(2),,c_(2)+ra_(2)),(a_(3)+pb_(3),,b_(3)+qc_(3),,c_(3)+ra_(3)):}| . Then

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

The value of the determinant Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))| , is

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

Prove that the value of the following determinant is zero: |{:(a_(1),,la_(1)+mb_(1),,b_(1)),(a_(2),,la_(2)+mb_(2),,b_(2)),( a_(3),,la_(3)+mb_(3),,b_(3)):}|

RESONANCE ENGLISH-MATRICES & DETERMINANT-SECTION-B
  1. If minor of three-one element (i.e.M(31)) in the determinant [{:(,0,1,...

    Text Solution

    |

  2. Using the properties of detminants, evalulate. (i) |{:(,23,6,11),(,36...

    Text Solution

    |

  3. Prove that: (i) |{:(,1,1,1),(,a,b,c),(,a^(3),b^(3),c^(3)):}|=(a-b)(b-...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,...

    Text Solution

    |

  6. If Sr = alpha^r + beta^r + gamma^r then show that |[S0,S1,S2],[S1,S2,S...

    Text Solution

    |

  7. The value of |(a(1) x(1) + b(1) y(1),a(1) x(2) + b(1) y(2),a(1) x(3) +...

    Text Solution

    |

  8. If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find...

    Text Solution

    |

  9. If A and B are squar matrices of order 3 such that |A|=-1, |B|=3 then ...

    Text Solution

    |

  10. Let A=[(cos^(- 1)x,cos^(- 1)y,cos^(- 1)z),(cos^(- 1)y,cos^(- 1)z,cos^...

    Text Solution

    |

  11. Find the value of the determinant |{:(-1,2,1),(3+2sqrt(2),2+2sqrt(2)...

    Text Solution

    |

  12. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  13. If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a...

    Text Solution

    |

  14. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  15. The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...

    Text Solution

    |

  16. If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x...

    Text Solution

    |

  17. if determinant |{:( cos (0 + phi),,-sin (0+phi),,cos 2phi),(sin 0,,cos...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |