Home
Class 12
MATHS
If A=[{:(,1,2),(,2,1):}] then adj A=...

If `A=[{:(,1,2),(,2,1):}]` then adj A=

A

`[{:(,1,-2),(,-2,1):}]`

B

`[{:(,2,1),(,1,1):}]`

C

`[{:(,1,-2),(,-2,-1):}]`

D

`[{:(,-1,2),(,2,-1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor matrix is obtained by calculating the cofactors of each element of the matrix \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot M_{11} \] where \( M_{11} \) is the minor of the element in the first row and first column. The minor is the determinant of the matrix obtained by deleting the first row and first column: \[ M_{11} = \begin{vmatrix} 1 \end{vmatrix} = 1 \] Therefore, \[ C_{11} = 1 \cdot 1 = 1 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot M_{12} \] where \( M_{12} \) is the minor of the element in the first row and second column: \[ M_{12} = \begin{vmatrix} 2 \end{vmatrix} = 2 \] Therefore, \[ C_{12} = -1 \cdot 2 = -2 \] 3. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} \cdot M_{21} \] where \( M_{21} \) is the minor of the element in the second row and first column: \[ M_{21} = \begin{vmatrix} 2 \end{vmatrix} = 2 \] Therefore, \[ C_{21} = -1 \cdot 2 = -2 \] 4. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} \cdot M_{22} \] where \( M_{22} \) is the minor of the element in the second row and second column: \[ M_{22} = \begin{vmatrix} 1 \end{vmatrix} = 1 \] Therefore, \[ C_{22} = 1 \cdot 1 = 1 \] Now, we can write the cofactor matrix: \[ \text{Cofactor Matrix} = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} \] ### Step 2: Find the Adjoint Matrix The adjoint of a matrix is the transpose of its cofactor matrix. Thus, we take the transpose of the cofactor matrix: \[ \text{Adjoint} \, A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}^T = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} \] ### Final Answer The adjoint of matrix \( A \) is: \[ \text{adj} \, A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

If A=[{:(11,7),(-13,17):}] then adj(adj A) is

If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T) , then 5a+b is equal to

If A=[(1,2,0),(-1,1,2),(2,-1,1)] then det (Adj(AdjA))= (A) 13 (B) 13^2 (C) 13^4 (D) none of these

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

Let M=[{:(0,1,a),(1,2,3),(3,b,1):}] and adj M =[{:(-1,,1,,-1),(8,,-6,,2),(-5,,3,,-1):}] where a and b are real numbers. Which of the following options is/are correct ?

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A