Home
Class 12
MATHS
Let A=[(-1,2,-3),(-2,0,3),(3,-3,1)] be a...

Let `A=[(-1,2,-3),(-2,0,3),(3,-3,1)]` be a mstrix, then `|A|adj(A^(-1))` is equal to

A

`O_(3xx3)`

B

`I_(3)`

C

`[{:(,-1,2,-3),(,-2,0,3),(,3,-3,1):}]`

D

`[{:(,3,-3,1),(,3,0,-2),(,-1,2,-3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |A| \cdot \text{adj}(A^{-1}) \) where \( A = \begin{pmatrix} -1 & 2 & -3 \\ -2 & 0 & 3 \\ 3 & -3 & 1 \end{pmatrix} \). ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ |A| = -1 \cdot (0 \cdot 1 - 3 \cdot (-3)) - 2 \cdot (-2 \cdot 1 - 3 \cdot 3) - 3 \cdot (-2 \cdot (-3) - 0 \cdot 3) \] Calculating each term: 1. First term: \[ -1 \cdot (0 + 9) = -9 \] 2. Second term: \[ -2 \cdot (2 - 9) = -2 \cdot (-7) = 14 \] 3. Third term: \[ -3 \cdot (6 - 0) = -18 \] Now, combine these results: \[ |A| = -9 + 14 - 18 = -13 \] ### Step 2: Find the Adjoint of A The adjoint of a matrix \( A \) is the transpose of the cofactor matrix. For the matrix \( A \), we need to find the cofactors of each element. Calculating the cofactors: - For \( a_{11} = -1 \): \[ C_{11} = | \begin{pmatrix} 0 & 3 \\ -3 & 1 \end{pmatrix} | = (0 \cdot 1 - 3 \cdot (-3)) = 9 \quad \Rightarrow \quad \text{Cofactor} = 9 \] - For \( a_{12} = 2 \): \[ C_{12} = -| \begin{pmatrix} -2 & 3 \\ 3 & 1 \end{pmatrix} | = -((-2 \cdot 1 - 3 \cdot 3)) = -(-2 - 9) = 11 \quad \Rightarrow \quad \text{Cofactor} = -11 \] - For \( a_{13} = -3 \): \[ C_{13} = | \begin{pmatrix} -2 & 0 \\ 3 & -3 \end{pmatrix} | = (-2 \cdot -3 - 0 \cdot 3) = 6 \quad \Rightarrow \quad \text{Cofactor} = 6 \] Continuing this process for all elements, we find the cofactor matrix and then transpose it to find the adjoint \( \text{adj}(A) \). ### Step 3: Find \( \text{adj}(A^{-1}) \) Using the property of adjoints, we know: \[ \text{adj}(A^{-1}) = \frac{1}{|A|} \text{adj}(A) \] ### Step 4: Combine Results Now we can calculate: \[ |A| \cdot \text{adj}(A^{-1}) = |A| \cdot \left(\frac{1}{|A|} \text{adj}(A)\right) = \text{adj}(A) \] Since we have already calculated \( |A| = -13 \), the final result simplifies to \( \text{adj}(A) \). ### Final Answer Thus, the value of \( |A| \cdot \text{adj}(A^{-1}) \) is equal to \( \text{adj}(A) \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-2,0),(0,0,-2)] , then |adj A| is equal to

If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-3,0),(0,0,-3)] , then |A| is equal to

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

If A=[(-2,3),(-1,1)] then A^(3) is equal to

Let A=[{:(2, -1, 3), (4, 0, 2), (-3, 2, 6):}] , find det (adj A).