Home
Class 12
MATHS
Let A be an involutary matrix and S be t...

Let A be an involutary matrix and S be the set containing solution of `A^(x)=1` where `A = [[0,1,-1],[4,-3,4],[3,-3,4]]` Then minimum value of `sum_(x in S )^(oo) (sin^(x)theta+cos^(x)theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first confirm that the matrix \( A \) is involutory, then find the set \( S \) containing solutions of \( A^x = I \), and finally compute the minimum value of the summation \( \sum_{x \in S} (\sin^x \theta + \cos^x \theta) \). ### Step 1: Verify that \( A \) is an involutory matrix An involutory matrix satisfies the condition \( A^2 = I \), where \( I \) is the identity matrix. Given: \[ A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} \] We need to calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} \] Calculating each element of \( A^2 \): - First row: - \( (0 \cdot 0 + 1 \cdot 4 + (-1) \cdot 3) = 4 - 3 = 1 \) - \( (0 \cdot 1 + 1 \cdot (-3) + (-1) \cdot (-3)) = -3 + 3 = 0 \) - \( (0 \cdot (-1) + 1 \cdot 4 + (-1) \cdot 4) = 4 - 4 = 0 \) - Second row: - \( (4 \cdot 0 + (-3) \cdot 4 + 4 \cdot 3) = -12 + 12 = 0 \) - \( (4 \cdot 1 + (-3) \cdot (-3) + 4 \cdot (-3)) = 4 + 9 - 12 = 1 \) - \( (4 \cdot (-1) + (-3) \cdot 4 + 4 \cdot 4) = -4 - 12 + 16 = 0 \) - Third row: - \( (3 \cdot 0 + (-3) \cdot 4 + 4 \cdot 3) = -12 + 12 = 0 \) - \( (3 \cdot 1 + (-3) \cdot (-3) + 4 \cdot (-3)) = 3 + 9 - 12 = 0 \) - \( (3 \cdot (-1) + (-3) \cdot 4 + 4 \cdot 4) = -3 - 12 + 16 = 1 \) Thus, we have: \[ A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I \] ### Step 2: Identify the set \( S \) Since \( A^2 = I \), it follows that \( A^x = I \) for even integers \( x \). Thus, the set \( S \) is: \[ S = \{2, 4, 6, 8, \ldots\} \] ### Step 3: Calculate the minimum value of the summation We need to find: \[ \sum_{x \in S} (\sin^x \theta + \cos^x \theta) \] This can be split into two separate series: \[ \sum_{n=1}^{\infty} \sin^{2n} \theta + \sum_{n=1}^{\infty} \cos^{2n} \theta \] Using the formula for the sum of a geometric series: \[ \sum_{n=0}^{\infty} r^n = \frac{1}{1 - r} \quad \text{for } |r| < 1 \] For \( \sin^{2n} \theta \): \[ \sum_{n=1}^{\infty} \sin^{2n} \theta = \sin^2 \theta \sum_{n=0}^{\infty} (\sin^2 \theta)^n = \frac{\sin^2 \theta}{1 - \sin^2 \theta} = \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta \] For \( \cos^{2n} \theta \): \[ \sum_{n=1}^{\infty} \cos^{2n} \theta = \cos^2 \theta \sum_{n=0}^{\infty} (\cos^2 \theta)^n = \frac{\cos^2 \theta}{1 - \cos^2 \theta} = \frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta \] Thus, the total summation is: \[ \tan^2 \theta + \cot^2 \theta \] Using the identity: \[ \tan^2 \theta + \cot^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{\sin^4 \theta + \cos^4 \theta}{\sin^2 \theta \cos^2 \theta} \] Using the identity \( \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \): \[ \tan^2 \theta + \cot^2 \theta = \frac{1 - 2\sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \] The minimum value occurs when \( \sin^2 \theta = \cos^2 \theta = \frac{1}{2} \): \[ \tan^2 \theta + \cot^2 \theta = 2 \] ### Final Result Thus, the minimum value of the summation is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

The minimum value of sqrt((3s in x-4cosx-10(3sinx+4cosx-1)) is ________

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

Let sin theta-cos theta=1 then the value of sin^(3) theta-cos^(3)theta is :

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

Let x be the solution set of equation A^x=Idot,w h e r eA+[0 1-1 4-3 4 3-3 4]a n dI is the corresponding unit matrix and xsubeN , then the minimum value of sum(cos^xtheta+sin^xtheta),theta in Rdot

Let x be the solution set of equation A^x=Idot,w h e r eA+[0 1-1 4-3 4 3-3 4]a n dI is the corresponding unit matrix and xsubeN , then the minimum value of sum(cos^xtheta+sin^xtheta),theta in Rdot

If 4 tan theta =3 evaluate (4sin theta - cos theta+1)/(4sin theta+cos theta-1)

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

The minimum value of the function f(x)=(3 sin x - 4 cos x - 10)(3 sin x + 4 cos x-10) , is

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II
  1. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  2. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I i...

    Text Solution

    |

  3. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  4. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  5. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  6. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  7. If a(1), a(2), a(3), 5, 4, a(6), a(7), a(8), a(9) are in H.P. and the ...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. Suppose A is a matrix such that A^2 =A and (I + A)^6 =I+ KA, then K is...

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  13. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  14. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |