Home
Class 12
MATHS
If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,...

If `|{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gammac)^(3)"then"(2alpha+beta-gamma)^(k)"is"(alpha,beta,gamma,k in Z^(+))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of \( (2\alpha + \beta - \gamma)^k \) given the determinant condition. Let's break down the solution step-by-step. ### Step 1: Write down the determinant We have the determinant: \[ \begin{vmatrix} a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b \end{vmatrix} \] ### Step 2: Simplify the determinant We can simplify the determinant by performing row operations. Specifically, we can subtract the first row from the second and third rows: - \( R_2 \rightarrow R_2 - R_1 \) - \( R_3 \rightarrow R_3 - R_1 \) This gives us: \[ \begin{vmatrix} a + b + 2c & a & b \\ c - (a + b + 2c) & (b + c + 2a) - a & b - b \\ c - (a + b + 2c) & a - (a + b + 2c) & (c + a + 2b) - b \end{vmatrix} \] ### Step 3: Calculate the new rows After performing the row operations, we have: - For \( R_2 \): - First element: \( c - (a + b + 2c) = -a - b - c \) - Second element: \( (b + c + 2a) - a = b + c + a \) - Third element: \( 0 \) - For \( R_3 \): - First element: \( c - (a + b + 2c) = -a - b - c \) - Second element: \( a - (a + b + 2c) = -b - 2c \) - Third element: \( (c + a + 2b) - b = c + a + b \) Thus, the determinant simplifies to: \[ \begin{vmatrix} a + b + 2c & a & b \\ -a - b - c & b + c + a & 0 \\ -a - b - c & -b - 2c & c + a + b \end{vmatrix} \] ### Step 4: Factor out common terms Notice that the first column has a common factor. We can factor out \( -1 \) from the second and third rows: \[ = -1 \cdot \begin{vmatrix} a + b + 2c & a & b \\ a + b + c & b + c + a & 0 \\ a + b + c & -b - 2c & c + a + b \end{vmatrix} \] ### Step 5: Evaluate the determinant Now we can evaluate the determinant. The determinant can be computed as: \[ = (a + b + 2c) \cdot \begin{vmatrix} b + c + a & 0 \\ -b - 2c & c + a + b \end{vmatrix} \] This determinant evaluates to: \[ = (a + b + 2c) \cdot ((b + c + a)(c + a + b)) \] ### Step 6: Set the determinant equal to \( k(\alpha a + \beta b + \gamma c)^3 \) Given that: \[ |D| = k(\alpha a + \beta b + \gamma c)^3 \] From the structure of the determinant, we can deduce that \( k = 2 \), \( \alpha = 1 \), \( \beta = 1 \), and \( \gamma = 1 \). ### Step 7: Calculate \( (2\alpha + \beta - \gamma)^k \) Now we need to compute \( (2\alpha + \beta - \gamma)^k \): \[ 2\alpha + \beta - \gamma = 2(1) + 1 - 1 = 2 \] Thus, we have: \[ (2\alpha + \beta - \gamma)^k = 2^2 = 4 \] ### Final Answer The final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T then ABC is

If f(x)=a=b x+c x^2a n dalpha,beta,gamma are the roots of the equation x^3=1,t h e n|a b c b c a c a b| is equal to f(alpha)+f(beta)+f(gamma) f(alpha)f(beta)+f(beta)f(gamma)+f(gamma)f(alpha) f(alpha)f(beta)f(gamma) -f(alpha)f(beta)f(gamma)

If A =[{:( alpha , a ),( beta , b),( gamma, c):}] then (A)A^(T) is

The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) + cos^(2)alpha - 2cos alpha cos(beta + gamma)cos(alpha + beta + gamma) is (a) independent of alpha (b) independent of beta (c) dependent on gamma only (d) dependent on alpha, beta, gamma

if a=b ne c and alpha=beta=gamma=90^(@) , the crystal system is

Using properties of determinants. Prove that |(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta)|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

If alpha,beta,gamma are such that alpha+beta+gamma=2,""alpha^2+beta^2+gamma^2=6,""alpha^3+beta^3+gamma^3=8,t h e n""alpha^4+beta^4+gamma^4 is a. 18 b. 10 c. 15 d. 36

If (tan(alpha+beta-gamma))/("tan"(alpha-beta+gamma))=(tangamma)/(tanbeta),(beta!=gamma) then sin2alpha+sin2beta+sin2gamma= (a) 0 (b) 1 (c) 2 (d) 1/2

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

The vector equation of the plane passing through vec a ,\ vec b , vec c\ i s\ vec r=alpha vec a+beta vec b+gamma vec c provided that a. alpha+beta+gamma=0 b. alpha+beta+gamma=1 c. alpha+beta=gamma d. alpha^2+beta^2+gamma^2=1

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II
  1. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  2. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I i...

    Text Solution

    |

  3. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  4. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  5. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  6. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  7. If a(1), a(2), a(3), 5, 4, a(6), a(7), a(8), a(9) are in H.P. and the ...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. Suppose A is a matrix such that A^2 =A and (I + A)^6 =I+ KA, then K is...

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  13. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  14. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |