Home
Class 12
MATHS
|[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+...

`|[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64`. then (ab+bc+ac) is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ab + bc + ac \) given that the determinant of the matrix \[ \begin{bmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{bmatrix} \] is equal to 64. ### Step-by-Step Solution: 1. **Set Up the Determinant**: We denote the determinant of the matrix as \( D \): \[ D = \begin{vmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix} \] 2. **Apply Row Operations**: We can simplify the determinant by multiplying the first row by \( a \), the second row by \( b \), and the third row by \( c \). This gives us: \[ D = \frac{1}{abc} \begin{vmatrix} -abc & ab^2 + abc & ac^2 + abc \\ a^2b + abc & -abc & bc^2 + abc \\ a^2c + abc & b^2c + abc & -abc \end{vmatrix} \] 3. **Factor Out Common Terms**: We can factor out \( a \) from the first column, \( b \) from the second column, and \( c \) from the third column: \[ D = \frac{abc}{abc} \begin{vmatrix} -bc & ab + ac + bc & ac + ab \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix} \] 4. **Simplify the Determinant**: Now we can perform column operations to simplify the determinant further. We can replace the second column with the difference of the second and third columns: \[ D = \begin{vmatrix} -bc & 0 & ac + ab \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix} \] 5. **Calculate the Determinant**: Now we can calculate the determinant using cofactor expansion or other methods. After simplification, we find that: \[ D = (ab + ac + bc)^3 \] 6. **Set the Determinant Equal to 64**: Given that \( D = 64 \), we have: \[ (ab + ac + bc)^3 = 64 \] 7. **Solve for \( ab + ac + bc \)**: Taking the cube root of both sides, we find: \[ ab + ac + bc = 4 \] ### Final Answer: Thus, the value of \( ab + ac + bc \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

Let Delta = |{:(-bc,,b^(2)+bc,,c^(2)+bc),(a^(2)+ac,,-ac,,c^(2)+ac),(a^(2)+ab,,b^(2)+ab,,-ab):}| and the equation px^(3) +qx^(2) +rx+s=0 has roots a,b,c where a,b,c in R^(+) " if " Delta =27 " and " a^(2) +b^(2)+c^(2) =3 then

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

|[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|=|[a,b,c],[b,c,a],[c,a,b]|^2

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

If A=[[0 ,c,-b],[-c, 0, a],[ b, -a, 0]] and B=[[a^2, ab, ac],[ ab, b^2 , bc],[ ac ,bc, c^2]] , show that A B=B A=O_3xx3 .

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II
  1. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  2. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I i...

    Text Solution

    |

  3. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  4. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  5. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  6. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  7. If a(1), a(2), a(3), 5, 4, a(6), a(7), a(8), a(9) are in H.P. and the ...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. Suppose A is a matrix such that A^2 =A and (I + A)^6 =I+ KA, then K is...

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  13. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  14. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |