Home
Class 12
MATHS
A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4...

`A_(1)=[a_(1)]`
`A_(2)=[{:(,a_(2),a_(3)),(,a_(4),a_(5)):}]`
`A_(3)=[{:(,a_(6),a_(7),a_(8)),(,a_(9),a_(10),a_(11)),(,a_(12),a_(13),a_(14)):}]......A_(n)=[.......]`
Where, `a_(r)=[log_(2)r]([.])` denotes greatest integer). Then trace of `A_(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the trace of the matrix \( A_{10} \), we will follow these steps: ### Step 1: Understand the structure of the matrices The matrix \( A_n \) is an \( n \times n \) matrix. The elements of these matrices are defined by \( a_r = \lfloor \log_2 r \rfloor \), where \( \lfloor x \rfloor \) denotes the greatest integer less than or equal to \( x \). ### Step 2: Determine the number of elements in \( A_{10} \) Since \( A_{10} \) is a \( 10 \times 10 \) matrix, it contains \( 10^2 = 100 \) elements. The elements are indexed from \( A_1 \) to \( A_{100} \). ### Step 3: Identify the starting and ending indices for \( A_{10} \) The elements in \( A_{10} \) start from \( A_{286} \) (which is \( A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_8 + A_9 = 285 + 1 \)) and end at \( A_{385} \). ### Step 4: Identify the diagonal elements of \( A_{10} \) The diagonal elements of \( A_{10} \) are: - \( A_{286} \) - \( A_{297} \) - \( A_{308} \) - \( A_{319} \) - \( A_{330} \) - \( A_{341} \) - \( A_{352} \) - \( A_{363} \) - \( A_{374} \) - \( A_{385} \) ### Step 5: Calculate the trace of \( A_{10} \) The trace of a matrix is the sum of its diagonal elements. Thus, we need to calculate: \[ \text{Trace}(A_{10}) = a_{286} + a_{297} + a_{308} + a_{319} + a_{330} + a_{341} + a_{352} + a_{363} + a_{374} + a_{385} \] ### Step 6: Calculate each \( a_r \) Using the formula \( a_r = \lfloor \log_2 r \rfloor \): - \( a_{286} = \lfloor \log_2 286 \rfloor = 8 \) - \( a_{297} = \lfloor \log_2 297 \rfloor = 8 \) - \( a_{308} = \lfloor \log_2 308 \rfloor = 8 \) - \( a_{319} = \lfloor \log_2 319 \rfloor = 8 \) - \( a_{330} = \lfloor \log_2 330 \rfloor = 8 \) - \( a_{341} = \lfloor \log_2 341 \rfloor = 8 \) - \( a_{352} = \lfloor \log_2 352 \rfloor = 8 \) - \( a_{363} = \lfloor \log_2 363 \rfloor = 8 \) - \( a_{374} = \lfloor \log_2 374 \rfloor = 8 \) - \( a_{385} = \lfloor \log_2 385 \rfloor = 8 \) ### Step 7: Sum the diagonal elements Now, we sum all the calculated values: \[ \text{Trace}(A_{10}) = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 80 \] ### Final Answer Thus, the trace of \( A_{10} \) is \( \boxed{80} \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| then cofactor of a_23 represented as

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

if a_(1),a_(2),a_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(2)= |{:(a_(2)a_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(4)a_(12),,a_(4),,a_(5)):}| then Delta_(1):Delta_(2)= "_____"

If a_(1),a_(2),a_(3),….,a_(r) are in GP, then prove that the determinant |(a_(r+1),a_(r+5),a_(r+9)),(a_(r+7),a_(r+11),a_(4+15)),(a_(r+11),a_(r+17),a_(r+21))| is independent of r .

if a_(r) = (cos 2r pi + I sin 2 r pi)^(1//9) then prove that |{:(a_(1),,a_(2),,a_(3)),a_(4) ,,a_(5),,a_(6)),( a_(7),, a_(8),,a_(9)):}|=0

Let (a_(1),a_(2),a_(3),a_(4),a_(5)) denote a re=arrangement of (3,-5,7,4-9), then a_(1)x^(4)+a_(2)x^(3)+a_(3)x^(2)+a_(4)+a_(5)=0 has

If a_(i) , i=1,2,…..,9 are perfect odd squares, then |{:(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9)):}| is always a multiple of

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II
  1. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  2. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I i...

    Text Solution

    |

  3. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  4. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  5. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  6. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  7. If a(1), a(2), a(3), 5, 4, a(6), a(7), a(8), a(9) are in H.P. and the ...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. Suppose A is a matrix such that A^2 =A and (I + A)^6 =I+ KA, then K is...

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  13. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  14. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |