Home
Class 12
MATHS
If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13...

If `{1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-1),(7,-11,5)]` for `A=[(-2,3,4),(5,-4,-3),(7,2,9)]`, then `lambda` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{2}(A - A' + I)^{-1} = \frac{2}{\lambda} \begin{pmatrix} \lambda - 13 & -\frac{\lambda}{3} & \frac{\lambda}{3} \\ -17 & 10 & -1 \\ 7 & -11 & 5 \end{pmatrix} \] for \( A = \begin{pmatrix} -2 & 3 & 4 \\ 5 & -4 & -3 \\ 7 & 2 & 9 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A' \) (Transpose of \( A \)) The transpose of matrix \( A \) is obtained by swapping rows with columns: \[ A' = \begin{pmatrix} -2 & 5 & 7 \\ 3 & -4 & 2 \\ 4 & -3 & 9 \end{pmatrix} \] ### Step 2: Calculate \( A - A' \) Now, we subtract \( A' \) from \( A \): \[ A - A' = \begin{pmatrix} -2 & 3 & 4 \\ 5 & -4 & -3 \\ 7 & 2 & 9 \end{pmatrix} - \begin{pmatrix} -2 & 5 & 7 \\ 3 & -4 & 2 \\ 4 & -3 & 9 \end{pmatrix} \] Calculating this gives: \[ A - A' = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0 \end{pmatrix} \] ### Step 3: Add the Identity Matrix \( I \) The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now, we add \( I \) to \( A - A' \): \[ A - A' + I = \begin{pmatrix} 0 & -2 & -3 \\ 2 & 0 & -5 \\ 3 & 5 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -3 \\ 2 & 1 & -5 \\ 3 & 5 & 1 \end{pmatrix} \] ### Step 4: Multiply by \( \frac{1}{2} \) Now we multiply the result by \( \frac{1}{2} \): \[ \frac{1}{2}(A - A' + I) = \frac{1}{2} \begin{pmatrix} 1 & -2 & -3 \\ 2 & 1 & -5 \\ 3 & 5 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -1 & -\frac{3}{2} \\ 1 & \frac{1}{2} & -\frac{5}{2} \\ \frac{3}{2} & \frac{5}{2} & \frac{1}{2} \end{pmatrix} \] ### Step 5: Find the Inverse Let \( B = \frac{1}{2}(A - A' + I) \). We need to find \( B^{-1} \). To find the inverse, we can use the formula \( B^{-1} = \frac{1}{\text{det}(B)} \text{adj}(B) \). First, we calculate the determinant of \( B \). ### Step 6: Calculate the Determinant of \( B \) Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(B) = b_{11}(b_{22}b_{33} - b_{23}b_{32}) - b_{12}(b_{21}b_{33} - b_{23}b_{31}) + b_{13}(b_{21}b_{32} - b_{22}b_{31}) \] Substituting the values from \( B \): \[ \text{det}(B) = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \cdot \frac{1}{2} - (-\frac{5}{2})(\frac{5}{2}) \right) - (-1) \left( 1 \cdot \frac{1}{2} - (-\frac{5}{2})(\frac{3}{2}) \right) + (-\frac{3}{2}) \left( 1 \cdot \frac{5}{2} - \frac{1}{2} \cdot \frac{3}{2} \right) \right) \] After calculating, we find: \[ \text{det}(B) = \frac{39}{8} \] ### Step 7: Calculate the Adjoint of \( B \) The adjoint of \( B \) can be calculated by finding the cofactor matrix and then transposing it. ### Step 8: Set Up the Equation Now we set up the equation: \[ \frac{1}{2}(A - A' + I)^{-1} = \frac{8}{39} \text{adj}(B) \] Equating this to the right-hand side given in the problem: \[ \frac{8}{39} \text{adj}(B) = \frac{2}{\lambda} \begin{pmatrix} \lambda - 13 & -\frac{\lambda}{3} & \frac{\lambda}{3} \\ -17 & 10 & -1 \\ 7 & -11 & 5 \end{pmatrix} \] ### Step 9: Solve for \( \lambda \) By comparing the elements of the matrices, we can derive the value of \( \lambda \). After equating and solving the equations, we find: \[ \lambda = 39 \] ### Final Answer Thus, the value of \( \lambda \) is \[ \boxed{39} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-D|17 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

Find the value of lambda, a non-zero scalar, if lambda[(1 ,0, 2),( 3,4, 5)]+2[(1,2,3),(-1,-3,2)]=[(4, 4, 10),( 4, 2 ,14)]

"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}| be an identity in lambda , where p,q,r,s and t are constants. Then, the value of t is..... .

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to : (A) 4 lambda abc (B) -4 lambda abc (C) 4 lambda^2 (D) -4 lambda^2

If points (0,0,9),(1,1,8),(1,2,7)a n d(2,2,lambda) are coplanar, then lambda=

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"lambda "is"

If 2"tan"^(-1)(1)/(5)-"sin"^(-1)(3)/(5)= -"cos"^(-1)(9lambda)/(65) , then lambda=

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II
  1. Let A=[{:p q q p:}] such that det(A)=r where p,q,r all prime number, t...

    Text Solution

    |

  2. Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I i...

    Text Solution

    |

  3. Let A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2...

    Text Solution

    |

  4. Let A be an involutary matrix and S be the set containing solution of ...

    Text Solution

    |

  5. If A is a diagonal matrix of order 3xx3 is commutative with every squa...

    Text Solution

    |

  6. A is a (3xx3) diagonal matrix having integral entries such that det (A...

    Text Solution

    |

  7. If a(1), a(2), a(3), 5, 4, a(6), a(7), a(8), a(9) are in H.P. and the ...

    Text Solution

    |

  8. If |{:(,a+b+2c,a,b),(,c,b+c+2a,b),(,c,a,c+a+2b):}|=k(alphaa+betab+gamm...

    Text Solution

    |

  9. If A is a square matrix of order 3 and A' denotes transpose of matrix ...

    Text Solution

    |

  10. Suppose A is a matrix such that A^2 =A and (I + A)^6 =I+ KA, then K is...

    Text Solution

    |

  11. |[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64. t...

    Text Solution

    |

  12. (i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin...

    Text Solution

    |

  13. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  14. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  15. Consider the system linear equations in x ,y ,a n dz given by (s in3th...

    Text Solution

    |

  16. The value of k for which the set of equations 3x+ky-2z=0, x + ky + 3z ...

    Text Solution

    |

  17. A(1)=[a(1)] A(2)=[{:(,a(2),a(3)),(,a(4),a(5)):}] A(3)=[{:(,a(6),a(...

    Text Solution

    |

  18. If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-...

    Text Solution

    |

  19. Given A=[[2,0,-alpha],[5,alpha,0],[0,alpha,3]] For a in R-{a, b}, A^(-...

    Text Solution

    |

  20. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |