Home
Class 12
MATHS
Let f(theta) = 1/2 + 2/3 cosec^(2)theta ...

Let `f(theta) = 1/2 + 2/3 cosec^(2)theta + 3/8 sec^(2) theta`. The least value of `f(theta)` for all permisible values of `theta`, is

A

`31/12`

B

`61/48`

C

`61/25`

D

`61/24`

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the function \( f(\theta) = \frac{1}{2} + \frac{2}{3} \csc^2 \theta + \frac{3}{8} \sec^2 \theta \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(\theta) = \frac{1}{2} + \frac{2}{3} \csc^2 \theta + \frac{3}{8} \sec^2 \theta \] We know that: \[ \csc^2 \theta = \frac{1}{\sin^2 \theta} \quad \text{and} \quad \sec^2 \theta = \frac{1}{\cos^2 \theta} \] Thus, we can express \( f(\theta) \) in terms of sine and cosine. ### Step 2: Differentiate the function To find the minimum value, we differentiate \( f(\theta) \) with respect to \( \theta \): \[ f'(\theta) = \frac{d}{d\theta} \left( \frac{1}{2} + \frac{2}{3} \csc^2 \theta + \frac{3}{8} \sec^2 \theta \right) \] Using the chain rule: \[ f'(\theta) = \frac{2}{3} \cdot 2 \csc^2 \theta \cdot (-\cot \theta) + \frac{3}{8} \cdot 2 \sec^2 \theta \cdot \sec \theta \tan \theta \] \[ = -\frac{4}{3} \csc^2 \theta \cot \theta + \frac{3}{4} \sec^3 \theta \tan \theta \] ### Step 3: Set the derivative to zero To find critical points, we set \( f'(\theta) = 0 \): \[ -\frac{4}{3} \csc^2 \theta \cot \theta + \frac{3}{4} \sec^3 \theta \tan \theta = 0 \] This implies: \[ \frac{4}{3} \csc^2 \theta \cot \theta = \frac{3}{4} \sec^3 \theta \tan \theta \] ### Step 4: Simplify the equation Rearranging gives: \[ \frac{4}{3} \cdot \frac{\cos^2 \theta}{\sin^2 \theta} \cdot \frac{\cos \theta}{\sin \theta} = \frac{3}{4} \cdot \frac{1}{\cos^3 \theta} \cdot \frac{\sin \theta}{\cos \theta} \] Cross-multiplying leads to: \[ \frac{16 \cos^4 \theta}{3 \sin^3 \theta} = \frac{9 \sin \theta}{4} \] ### Step 5: Solve for \( \theta \) This equation can be solved to find the values of \( \theta \) that minimize \( f(\theta) \). However, we can also analyze the function directly to find its minimum value. ### Step 6: Analyze the function To find the minimum value of \( f(\theta) \), we can evaluate it at specific angles where \( \sin \theta \) and \( \cos \theta \) take known values. For example, at \( \theta = \frac{\pi}{4} \): \[ \sin^2 \theta = \cos^2 \theta = \frac{1}{2} \] Thus: \[ f\left(\frac{\pi}{4}\right) = \frac{1}{2} + \frac{2}{3} \cdot 2 + \frac{3}{8} \cdot 2 = \frac{1}{2} + \frac{4}{3} + \frac{3}{4} \] Finding a common denominator (12): \[ = \frac{6}{12} + \frac{16}{12} + \frac{9}{12} = \frac{31}{12} \] ### Step 7: Check other angles We can check other angles such as \( \theta = 0 \) and \( \theta = \frac{\pi}{2} \) but they yield higher values for \( f(\theta) \). ### Conclusion After evaluating the function at various angles, we find that the least value of \( f(\theta) \) occurs at \( \theta = \frac{\pi}{4} \) and is: \[ \text{Minimum value of } f(\theta) = \frac{61}{24} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

1/sec2(theta) + 1/cosec2(theta) =

If f(theta) = (1- sin 2theta + cos 2theta)/(2sin 2theta) then value of f(11^o). f(34^o) is

If "cosec"theta=sqrt(2) ,then find the value of (tan^(2)theta-1) .

"cosec"^(2)theta(cos^(2)theta-3cos theta+2)ge1 , If theta belongs to

Prove that sqrt(sec^(2)theta + cosec^(2)theta) = tantheta + cottheta .

If sec theta+tan theta=(1)/(2) The value of sec theta=

If sec theta+tan theta=(1)/(2) The value of tan theta =

Statement-1: f(theta) = sin^(2)theta+ cos^(2)theta then f(theta)=1 for every real values of theta . Statement:2: g(theta) = sec^(2)theta - tan^(2)theta . then g(theta) =1 for every real value of theta . Statement-3: f(theta) = g(theta) for every real value of theta .

Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

Find the general value of theta 2 cot ^(2) theta = cosec ^(2) theta

RESONANCE ENGLISH-DPP-QUESTION
  1. Consider two quadratic expressions f(x)=ax^(2)+bx+c and g(x)=ax^(2)+px...

    Text Solution

    |

  2. Let alpha,beta be the roots of x^2-x+p=0a n dgamma,delta are roots of ...

    Text Solution

    |

  3. Let f(theta) = 1/2 + 2/3 cosec^(2)theta + 3/8 sec^(2) theta. The least...

    Text Solution

    |

  4. If f(x)=(1-s in2x+cos2x)/(2cos2x) , then the value of f(16^0)dotf(29^0...

    Text Solution

    |

  5. If pi=(tan(3^(n+1)theta)-tan theta) and Q=sum(r=0)^(n) (sin(3^(r )thet...

    Text Solution

    |

  6. Let a sequence whose n^(th) term is {a(n)} be defined as a(1) = 1/2 ...

    Text Solution

    |

  7. Which of the following are the solutions of equation 2sin 11x + cos3x ...

    Text Solution

    |

  8. If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0, then t...

    Text Solution

    |

  9. If tan A/2=5/6,Tan B/2=20/37. Then sides are in

    Text Solution

    |

  10. For all permissible values of x, if y= (sin3x(cos6x+cos4x))/(sinx(cos8...

    Text Solution

    |

  11. If b+c+,c+a,a+b are in H.P. then which of the following hold(s) good ?

    Text Solution

    |

  12. Three friends whose ages form a G.P. divide a certain sum of money in ...

    Text Solution

    |

  13. The roots of the equation x ^(5) - 40 x ^(4) + ax ^(3) + bx ^(2) + cx ...

    Text Solution

    |

  14. The number of terms of an A.P. is even; the sum of the odd terms is ...

    Text Solution

    |

  15. a, b and c are the first three terms of a geometric series. If the har...

    Text Solution

    |

  16. Consider a decreasing G.P. : g1,g2,g3...gn... Such that g1 + g2 + g3 =...

    Text Solution

    |

  17. If (cosx-cosalpha)/(cosx-cosbeta)=(sin^2alphacosbeta)/(sin^2betacosalp...

    Text Solution

    |

  18. For all pairs of angles (A, B), measured in degrees such that sin A + ...

    Text Solution

    |

  19. If cos(theta+phi)=mcos(theta-phi) then tantheta is equal to

    Text Solution

    |

  20. Let alpha be a real number such that 0 le alpha le pi. If f(x)=cos x+...

    Text Solution

    |