Home
Class 12
MATHS
If tan A/2=5/6,Tan B/2=20/37. Then sides...

If `tan A/2=5/6,Tan B/2=20/37.` Then sides are in

A

`B gt C`

B

`B lt C`

C

`a gt b gt c`

D

`a lt b lt c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the angles \( A \), \( B \), and \( C \) of a triangle based on the given values of \( \tan \frac{A}{2} \) and \( \tan \frac{B}{2} \). ### Step-by-Step Solution: 1. **Given Values**: \[ \tan \frac{A}{2} = \frac{5}{6}, \quad \tan \frac{B}{2} = \frac{20}{37} \] 2. **Using the Triangle Angle Sum Property**: Since \( A + B + C = 180^\circ \), we can express \( A + B \) as: \[ A + B = 180^\circ - C \] Dividing by 2 gives: \[ \frac{A + B}{2} = 90^\circ - \frac{C}{2} \] 3. **Applying the Tangent Addition Formula**: We can use the tangent addition formula: \[ \tan\left(\frac{A + B}{2}\right) = \tan\left(90^\circ - \frac{C}{2}\right) = \cot\left(\frac{C}{2} \] Thus, we have: \[ \tan\left(\frac{A + B}{2}\right) = \frac{\tan \frac{A}{2} + \tan \frac{B}{2}}{1 - \tan \frac{A}{2} \tan \frac{B}{2}} \] 4. **Substituting the Values**: Substitute the values of \( \tan \frac{A}{2} \) and \( \tan \frac{B}{2} \): \[ \tan\left(\frac{A + B}{2}\right) = \frac{\frac{5}{6} + \frac{20}{37}}{1 - \left(\frac{5}{6} \cdot \frac{20}{37}\right)} \] 5. **Calculating the Numerator**: To add \( \frac{5}{6} \) and \( \frac{20}{37} \), we find a common denominator: \[ \text{Common denominator} = 6 \times 37 = 222 \] Thus, \[ \frac{5}{6} = \frac{5 \times 37}{222} = \frac{185}{222}, \quad \frac{20}{37} = \frac{20 \times 6}{222} = \frac{120}{222} \] Therefore, \[ \tan\left(\frac{A + B}{2}\right) = \frac{185 + 120}{222} = \frac{305}{222} \] 6. **Calculating the Denominator**: Now calculate the denominator: \[ 1 - \left(\frac{5}{6} \cdot \frac{20}{37}\right) = 1 - \frac{100}{222} = \frac{222 - 100}{222} = \frac{122}{222} \] 7. **Final Calculation**: Now we can substitute back: \[ \tan\left(\frac{A + B}{2}\right) = \frac{\frac{305}{222}}{\frac{122}{222}} = \frac{305}{122} \] 8. **Finding \( \tan \frac{C}{2} \)**: Since \( \tan\left(\frac{A + B}{2}\right) = \cot\left(\frac{C}{2}\right) \), we have: \[ \cot\left(\frac{C}{2}\right) = \frac{305}{122} \implies \tan\left(\frac{C}{2}\right) = \frac{122}{305} \] 9. **Comparing the Values**: Now we compare: - \( \tan \frac{A}{2} = \frac{5}{6} \approx 0.833 \) - \( \tan \frac{B}{2} = \frac{20}{37} \approx 0.54 \) - \( \tan \frac{C}{2} = \frac{122}{305} \approx 0.4 \) From the comparisons: \[ \tan \frac{A}{2} > \tan \frac{B}{2} > \tan \frac{C}{2} \] 10. **Conclusion**: Since \( \tan \frac{A}{2} > \tan \frac{B}{2} > \tan \frac{C}{2} \), we conclude: \[ A > B > C \] Therefore, the sides opposite to these angles will also follow the same order: \[ a > b > c \] ### Final Answer: The sides are in the order \( a > b > c \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC , if tan.(A)/(2)=(5)/(6), tan.(B)/(2)=(20)/(37) , then which of the following is/are correct ?

. In a DeltaABC, If tan (A/2) , tan(B/2), tan (C/2) , are in H.P.,then a,b,c are in

If tan(A+B)=x and tan(A-B)=y then find the values of tan2A and tan2B

If, in a triangleABC, tan(A/2) =5/6 and tan(C/2) = 2/5 , then:

In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

If tan(A+B)=pand tan(A-B)=q, then the value of tan2A, is

In triangle ABC, if |[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]| then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

If "tan"A=1/(2),"tan"B=1/(3), then "tan"(2A+B) is equal to

tan 5x tan3x tan2x=

If in a triangle ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

RESONANCE ENGLISH-DPP-QUESTION
  1. Which of the following are the solutions of equation 2sin 11x + cos3x ...

    Text Solution

    |

  2. If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0, then t...

    Text Solution

    |

  3. If tan A/2=5/6,Tan B/2=20/37. Then sides are in

    Text Solution

    |

  4. For all permissible values of x, if y= (sin3x(cos6x+cos4x))/(sinx(cos8...

    Text Solution

    |

  5. If b+c+,c+a,a+b are in H.P. then which of the following hold(s) good ?

    Text Solution

    |

  6. Three friends whose ages form a G.P. divide a certain sum of money in ...

    Text Solution

    |

  7. The roots of the equation x ^(5) - 40 x ^(4) + ax ^(3) + bx ^(2) + cx ...

    Text Solution

    |

  8. The number of terms of an A.P. is even; the sum of the odd terms is ...

    Text Solution

    |

  9. a, b and c are the first three terms of a geometric series. If the har...

    Text Solution

    |

  10. Consider a decreasing G.P. : g1,g2,g3...gn... Such that g1 + g2 + g3 =...

    Text Solution

    |

  11. If (cosx-cosalpha)/(cosx-cosbeta)=(sin^2alphacosbeta)/(sin^2betacosalp...

    Text Solution

    |

  12. For all pairs of angles (A, B), measured in degrees such that sin A + ...

    Text Solution

    |

  13. If cos(theta+phi)=mcos(theta-phi) then tantheta is equal to

    Text Solution

    |

  14. Let alpha be a real number such that 0 le alpha le pi. If f(x)=cos x+...

    Text Solution

    |

  15. If a1,a2,a3,... are in A.P. and ai>0 for each i, then sum(i=1)^n n/(a(...

    Text Solution

    |

  16. Let n quantities be in A.P., d being the common difference. Let the ar...

    Text Solution

    |

  17. For a sequence {a(n)}, a(1) = 2 and (a(n+1))/(a(n)) = 1/3, Then sum(r=...

    Text Solution

    |

  18. The sum of the first three terms of the G.P. in which the difference b...

    Text Solution

    |

  19. Let S = sqrt(2) - sin sqrt(3) and C = cossqrt(2) - cossqrt(3) then wh...

    Text Solution

    |

  20. If 2tan""(alpha)/(2) = tan ""(beta)/(2), then (3+5cosbeta)/(5+3cosbeta...

    Text Solution

    |