Home
Class 12
MATHS
For all permissible values of x, if y= (...

For all permissible values of `x`, if `y= (sin3x(cos6x+cos4x))/(sinx(cos8x+cos2x))`, then range of `y` is `(-oo,a)uu(b,oo)` If `2b` is the first term of a G.P and `a` is its common ratio then

A

`b - a = 10/3`

B

`3a+b=4`

C

`S_(oo) = 9`

D

`S_(oo) = 27/10(a+b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the expression for \( y \) and find its range. ### Step 1: Simplify the Expression for \( y \) Given: \[ y = \frac{\sin 3x (\cos 6x + \cos 4x)}{\sin x (\cos 8x + \cos 2x)} \] Using the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] We can simplify \( \cos 6x + \cos 4x \): \[ \cos 6x + \cos 4x = 2 \cos\left(\frac{6x + 4x}{2}\right) \cos\left(\frac{6x - 4x}{2}\right) = 2 \cos(5x) \cos(x) \] Similarly, for \( \cos 8x + \cos 2x \): \[ \cos 8x + \cos 2x = 2 \cos\left(\frac{8x + 2x}{2}\right) \cos\left(\frac{8x - 2x}{2}\right) = 2 \cos(5x) \cos(3x) \] Substituting these back into the expression for \( y \): \[ y = \frac{\sin 3x \cdot 2 \cos(5x) \cos(x)}{\sin x \cdot 2 \cos(5x) \cos(3x)} \] The \( 2 \cos(5x) \) cancels out (assuming \( \cos(5x) \neq 0 \)): \[ y = \frac{\sin 3x \cdot \cos x}{\sin x \cdot \cos 3x} \] ### Step 2: Rewrite Using Tangent We can rewrite the expression using tangent: \[ y = \frac{\tan 3x}{\tan x} \] ### Step 3: Analyze the Range of \( y \) Using the identity for \( \tan 3x \): \[ \tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \] Let \( a = \tan x \): \[ y = \frac{3a - a^3}{1 - 3a^2} \] This can be rearranged into a quadratic form: \[ y(1 - 3a^2) = 3a - a^3 \] \[ a^3 - 3a + 3ya^2 - y = 0 \] ### Step 4: Find the Discriminant To find the range of \( y \), we need the discriminant \( D \) of this cubic equation to be non-negative: \[ D = b^2 - 4ac \geq 0 \] Where: - \( a = 1 \) - \( b = 3y \) - \( c = -3 \) Thus: \[ D = (3y)^2 - 4(1)(-y) = 9y^2 + 4y \geq 0 \] ### Step 5: Solve the Inequality Factoring gives: \[ y(9y + 4) \geq 0 \] The critical points are: \[ y = 0 \quad \text{and} \quad 9y + 4 = 0 \Rightarrow y = -\frac{4}{9} \] ### Step 6: Determine the Range The intervals where the product is non-negative are: 1. \( y \leq -\frac{4}{9} \) 2. \( y \geq 0 \) Thus, the range of \( y \) is: \[ (-\infty, -\frac{4}{9}] \cup [0, \infty) \] ### Step 7: Identify \( a \) and \( b \) From the range, we have: - \( a = -\frac{4}{9} \) - \( b = 0 \) ### Step 8: Find \( 2b \) and the Common Ratio Given \( 2b \) is the first term of a G.P.: \[ 2b = 0 \quad \text{(first term)} \] And \( a \) is the common ratio: \[ a = -\frac{4}{9} \] ### Conclusion Thus, the values of \( a \) and \( b \) are: - \( a = -\frac{4}{9} \) - \( b = 0 \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

If y= (sinx+cosx)+(sin4x+cos4x)^(2) , then :

The value of int(sinx.cosx.cos2x.cos4x.cos8x.cos16x) dx is equal to

The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x) , is

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

If f(x)=sqrt((x-sinx)/(x+cos^2x)) , then lim (x->oo)f(x) is

Find the principal value solution of sin3x-3sin2x+sinx=cos3x-3cos2x+cosx

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

y=sqrt(sin +cos x+sqrt(sinx+ cos x +sqrt(sin x +cos x +....oo))) then find dy/dx

Let f(x)=cos10x+cos8x+3cos4x+3cos2x and g(x)=8cosxcos^3(3x) then for all x we have

RESONANCE ENGLISH-DPP-QUESTION
  1. If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0, then t...

    Text Solution

    |

  2. If tan A/2=5/6,Tan B/2=20/37. Then sides are in

    Text Solution

    |

  3. For all permissible values of x, if y= (sin3x(cos6x+cos4x))/(sinx(cos8...

    Text Solution

    |

  4. If b+c+,c+a,a+b are in H.P. then which of the following hold(s) good ?

    Text Solution

    |

  5. Three friends whose ages form a G.P. divide a certain sum of money in ...

    Text Solution

    |

  6. The roots of the equation x ^(5) - 40 x ^(4) + ax ^(3) + bx ^(2) + cx ...

    Text Solution

    |

  7. The number of terms of an A.P. is even; the sum of the odd terms is ...

    Text Solution

    |

  8. a, b and c are the first three terms of a geometric series. If the har...

    Text Solution

    |

  9. Consider a decreasing G.P. : g1,g2,g3...gn... Such that g1 + g2 + g3 =...

    Text Solution

    |

  10. If (cosx-cosalpha)/(cosx-cosbeta)=(sin^2alphacosbeta)/(sin^2betacosalp...

    Text Solution

    |

  11. For all pairs of angles (A, B), measured in degrees such that sin A + ...

    Text Solution

    |

  12. If cos(theta+phi)=mcos(theta-phi) then tantheta is equal to

    Text Solution

    |

  13. Let alpha be a real number such that 0 le alpha le pi. If f(x)=cos x+...

    Text Solution

    |

  14. If a1,a2,a3,... are in A.P. and ai>0 for each i, then sum(i=1)^n n/(a(...

    Text Solution

    |

  15. Let n quantities be in A.P., d being the common difference. Let the ar...

    Text Solution

    |

  16. For a sequence {a(n)}, a(1) = 2 and (a(n+1))/(a(n)) = 1/3, Then sum(r=...

    Text Solution

    |

  17. The sum of the first three terms of the G.P. in which the difference b...

    Text Solution

    |

  18. Let S = sqrt(2) - sin sqrt(3) and C = cossqrt(2) - cossqrt(3) then wh...

    Text Solution

    |

  19. If 2tan""(alpha)/(2) = tan ""(beta)/(2), then (3+5cosbeta)/(5+3cosbeta...

    Text Solution

    |

  20. If 2^x = cos(y/2) and a^x = sin y , then sin(y/2) is equal to

    Text Solution

    |