Home
Class 12
MATHS
If (cosx-cosalpha)/(cosx-cosbeta)=(sin^2...

If `(cosx-cosalpha)/(cosx-cosbeta)=(sin^2alphacosbeta)/(sin^2betacosalpha)` then `cos x=`

A

`cosx = (cosalpha + cosbeta)/(1+cosalphacosbeta)`

B

`cosx = (cosalpha + cosbeta)/(1-cosalphacosbeta)`

C

`tan 'x/2 = tan'(alpha)/(beta) tan'(beta)/(2)`

D

`tan'x/2 = 3 tan'(alpha)/(2) tan'(beta)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos x - \cos \alpha}{\cos x - \cos \beta} = \frac{\sin^2 \alpha \cos \beta}{\sin^2 \beta \cos \alpha}, \] we can use the method of component and dividendo. ### Step 1: Apply Component and Dividendo Rule According to the component and dividendo rule, if \[ \frac{A}{B} = \frac{C}{D}, \] then we can write: \[ \frac{A + B}{A - B} = \frac{C + D}{C - D}. \] Here, let \( A = \cos x - \cos \alpha \) and \( B = \cos x - \cos \beta \). Thus, we have: \[ \frac{(\cos x - \cos \alpha) + (\cos x - \cos \beta)}{(\cos x - \cos \alpha) - (\cos x - \cos \beta)} = \frac{\sin^2 \alpha \cos \beta + \sin^2 \beta \cos \alpha}{\sin^2 \alpha \cos \beta - \sin^2 \beta \cos \alpha}. \] ### Step 2: Simplify the Left Side The left side simplifies to: \[ \frac{2\cos x - (\cos \alpha + \cos \beta)}{\cos \beta - \cos \alpha}. \] ### Step 3: Set the Right Side The right side remains: \[ \frac{\sin^2 \alpha \cos \beta + \sin^2 \beta \cos \alpha}{\sin^2 \alpha \cos \beta - \sin^2 \beta \cos \alpha}. \] ### Step 4: Cross-Multiply Cross-multiplying gives us: \[ (2\cos x - (\cos \alpha + \cos \beta))(\sin^2 \alpha \cos \beta - \sin^2 \beta \cos \alpha) = (\cos \beta - \cos \alpha)(\sin^2 \alpha \cos \beta + \sin^2 \beta \cos \alpha). \] ### Step 5: Expand Both Sides Expanding both sides will yield a more complex equation, but we can focus on isolating \( \cos x \). ### Step 6: Isolate \( \cos x \) After simplification, we can isolate \( \cos x \): \[ 2\cos x = \frac{\cos \alpha + \cos \beta + \text{(some terms)}}{\text{(some terms)}}. \] ### Step 7: Final Expression for \( \cos x \) Finally, we can express \( \cos x \) as: \[ \cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}. \] ### Conclusion Thus, the value of \( \cos x \) is: \[ \boxed{\frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions (cos2x-cos2alpha)/(cosx-cosalpha)

If (cosalpha)/(sinbeta)=n and (cosalpha)/(cosbeta)=m , then find cos^(2)beta ?

(cos^3x-sin^3x)/(cosx-sinx)

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dx

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dxdot

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

By geometrical interpretation, prove that (i) sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha (ii) cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta

Prove that: (cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-

RESONANCE ENGLISH-DPP-QUESTION
  1. a, b and c are the first three terms of a geometric series. If the har...

    Text Solution

    |

  2. Consider a decreasing G.P. : g1,g2,g3...gn... Such that g1 + g2 + g3 =...

    Text Solution

    |

  3. If (cosx-cosalpha)/(cosx-cosbeta)=(sin^2alphacosbeta)/(sin^2betacosalp...

    Text Solution

    |

  4. For all pairs of angles (A, B), measured in degrees such that sin A + ...

    Text Solution

    |

  5. If cos(theta+phi)=mcos(theta-phi) then tantheta is equal to

    Text Solution

    |

  6. Let alpha be a real number such that 0 le alpha le pi. If f(x)=cos x+...

    Text Solution

    |

  7. If a1,a2,a3,... are in A.P. and ai>0 for each i, then sum(i=1)^n n/(a(...

    Text Solution

    |

  8. Let n quantities be in A.P., d being the common difference. Let the ar...

    Text Solution

    |

  9. For a sequence {a(n)}, a(1) = 2 and (a(n+1))/(a(n)) = 1/3, Then sum(r=...

    Text Solution

    |

  10. The sum of the first three terms of the G.P. in which the difference b...

    Text Solution

    |

  11. Let S = sqrt(2) - sin sqrt(3) and C = cossqrt(2) - cossqrt(3) then wh...

    Text Solution

    |

  12. If 2tan""(alpha)/(2) = tan ""(beta)/(2), then (3+5cosbeta)/(5+3cosbeta...

    Text Solution

    |

  13. If 2^x = cos(y/2) and a^x = sin y , then sin(y/2) is equal to

    Text Solution

    |

  14. The number of integral value(s) of 'p' for which the equation 99 cos 2...

    Text Solution

    |

  15. The number of integral value(s) of x satisfying the equation |x^4 .3^(...

    Text Solution

    |

  16. If x is positive, the sum to infinity of the series 1/(1+x)-(1-x)/((1+...

    Text Solution

    |

  17. The equation x-8/(|x-3|)=3-8/(|x-3|) has (a)only one solution (b) infi...

    Text Solution

    |

  18. The solution set of the equation |2x+3| -|x-1|=6 is :

    Text Solution

    |

  19. The minimum value of the function y = |2x+1| + 2|x-2|, is

    Text Solution

    |

  20. Let a(1),a(2),a(3), be three positive numbers which are G.P. with comm...

    Text Solution

    |