Home
Class 12
MATHS
If 2tan""(alpha)/(2) = tan ""(beta)/(2),...

If `2tan""(alpha)/(2) = tan ""(beta)/(2)`, then `(3+5cosbeta)/(5+3cosbeta)` is equal to :

A

`cos alpha`

B

`cos beta`

C

`sin alpha`

D

`sin beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{2 \tan(\frac{\alpha}{2})}{2} = \frac{\tan(\frac{\beta}{2})}{2} \] This simplifies to: \[ \tan(\frac{\alpha}{2}) = \frac{1}{2} \tan(\frac{\beta}{2}) \] Next, we need to find the value of: \[ \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta} \] Using the identity for cosine in terms of tangent, we can express \(\cos \beta\) in terms of \(\tan(\frac{\beta}{2})\): \[ \cos \beta = \frac{1 - \tan^2(\frac{\beta}{2})}{1 + \tan^2(\frac{\beta}{2})} \] Let \(T = \tan^2(\frac{\beta}{2})\). Then: \[ \cos \beta = \frac{1 - T}{1 + T} \] Substituting this into our expression gives: \[ \frac{3 + 5 \left(\frac{1 - T}{1 + T}\right)}{5 + 3 \left(\frac{1 - T}{1 + T}\right)} \] This simplifies to: \[ \frac{3(1 + T) + 5(1 - T)}{5(1 + T) + 3(1 - T)} \] Expanding both the numerator and the denominator: Numerator: \[ 3 + 3T + 5 - 5T = 8 - 2T \] Denominator: \[ 5 + 5T + 3 - 3T = 8 + 2T \] Thus, we have: \[ \frac{8 - 2T}{8 + 2T} \] Since we know from the problem statement that: \[ 2 \tan(\frac{\alpha}{2}) = \tan(\frac{\beta}{2}) \] Squaring both sides gives: \[ 4 \tan^2(\frac{\alpha}{2}) = \tan^2(\frac{\beta}{2}) \implies T = 4 \tan^2(\frac{\alpha}{2}) \] Substituting \(T\) back into our expression: \[ \frac{8 - 2(4 \tan^2(\frac{\alpha}{2}) )}{8 + 2(4 \tan^2(\frac{\alpha}{2}) )} \] This simplifies to: \[ \frac{8 - 8 \tan^2(\frac{\alpha}{2})}{8 + 8 \tan^2(\frac{\alpha}{2})} = \frac{8(1 - \tan^2(\frac{\alpha}{2}))}{8(1 + \tan^2(\frac{\alpha}{2}))} \] Cancelling out the 8 gives: \[ \frac{1 - \tan^2(\frac{\alpha}{2})}{1 + \tan^2(\frac{\alpha}{2})} \] Using the identity for cosine: \[ \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} = \cos(2\theta) \] Thus, we have: \[ \cos(\alpha) \] Therefore, the final answer is: \[ \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta} = \cos(\alpha) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

If 2t a nalpha/2=tan(beta/2) , prove that cosalpha=(3+5cosbeta)/(5+3cosbeta)

If 2 tan (alpha/2)=tan (beta/2), prove that cos alpha=(3+5 cos beta)/(5+3 cos beta).

If tan (alpha )/(2) : tan ""(beta)/(2) = 1 : sqrt3 show that cos beta = ( 2 cos alpha - 1 )/( 2- cos alpha ).

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

If cos alpha + cosbeta=a, sinalpha + sinbeta=b and theta is the arithmetic mean between alpha and beta , then (sin2theta + cos 2theta) is equal to :

If cosalpha=1/2(x+1/x) cosbeta=1/2(y+1/y) then cos(alpha-beta) is equal to

Three positive acute angles alpha, beta and gamma satisfy the relation tan. (beta)/(2)=(1)/(3)cot.(alpha)/(2)and cot.(gamma)/(2)=(1)/(2)(3tan.(alpha)/(2)+cot.(alpha)/(2)) . Then, the value of alpha+beta+gamma is equal to

If "sin" alpha=ksinbeta then tan((alpha-beta)/(2)).cot((alpha+beta)/(2)) is equal to

If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

RESONANCE ENGLISH-DPP-QUESTION
  1. The sum of the first three terms of the G.P. in which the difference b...

    Text Solution

    |

  2. Let S = sqrt(2) - sin sqrt(3) and C = cossqrt(2) - cossqrt(3) then wh...

    Text Solution

    |

  3. If 2tan""(alpha)/(2) = tan ""(beta)/(2), then (3+5cosbeta)/(5+3cosbeta...

    Text Solution

    |

  4. If 2^x = cos(y/2) and a^x = sin y , then sin(y/2) is equal to

    Text Solution

    |

  5. The number of integral value(s) of 'p' for which the equation 99 cos 2...

    Text Solution

    |

  6. The number of integral value(s) of x satisfying the equation |x^4 .3^(...

    Text Solution

    |

  7. If x is positive, the sum to infinity of the series 1/(1+x)-(1-x)/((1+...

    Text Solution

    |

  8. The equation x-8/(|x-3|)=3-8/(|x-3|) has (a)only one solution (b) infi...

    Text Solution

    |

  9. The solution set of the equation |2x+3| -|x-1|=6 is :

    Text Solution

    |

  10. The minimum value of the function y = |2x+1| + 2|x-2|, is

    Text Solution

    |

  11. Let a(1),a(2),a(3), be three positive numbers which are G.P. with comm...

    Text Solution

    |

  12. If a ,b ,c are first three terms of a G.P. If the harmonic mean of a a...

    Text Solution

    |

  13. The first term of an infinite geometic series is 21.The second term an...

    Text Solution

    |

  14. Make the following expressions free from modulus sign : (x in R) ...

    Text Solution

    |

  15. In the given figure (circle), P T=5,P D=7a n dP A=2, then the value of...

    Text Solution

    |

  16. Let a1,a2,a3..... be an arithmetic progression and b1,b2,b3...... be ...

    Text Solution

    |

  17. Let a(1),a(2),a(3)"……." be an arithmetic progression and b(1), b(2), b...

    Text Solution

    |

  18. If x = tan'(pi)/(18) then 3x^(6) - 27x^(4) + 33x^(2) is equal to -

    Text Solution

    |

  19. The sequence form by common terms of 17,21,25,"….." & 16,21,26,"…." ha...

    Text Solution

    |

  20. If Sn denotes the sum of first n terms of an arithmetic progression an...

    Text Solution

    |