Home
Class 12
MATHS
Solve |(x^2-5x+4)/(x^2-4)|<=1...

Solve `|(x^2-5x+4)/(x^2-4)|<=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \left| \frac{x^2 - 5x + 4}{x^2 - 4} \right| \leq 1 \), we will break it down into two parts based on the definition of absolute value. ### Step 1: Set up the inequalities The inequality \( \left| A \right| \leq B \) implies that \( -B \leq A \leq B \). Here, we have: \[ -1 \leq \frac{x^2 - 5x + 4}{x^2 - 4} \leq 1 \] ### Step 2: Solve the first inequality We start with the first part: \[ \frac{x^2 - 5x + 4}{x^2 - 4} \leq 1 \] Subtract 1 from both sides: \[ \frac{x^2 - 5x + 4}{x^2 - 4} - 1 \leq 0 \] This can be rewritten as: \[ \frac{x^2 - 5x + 4 - (x^2 - 4)}{x^2 - 4} \leq 0 \] Simplifying the numerator: \[ \frac{-5x + 8}{x^2 - 4} \leq 0 \] Factoring the denominator: \[ \frac{-5x + 8}{(x - 2)(x + 2)} \leq 0 \] ### Step 3: Find critical points Set the numerator and denominator to zero to find critical points: 1. \( -5x + 8 = 0 \) gives \( x = \frac{8}{5} \) 2. \( x - 2 = 0 \) gives \( x = 2 \) 3. \( x + 2 = 0 \) gives \( x = -2 \) ### Step 4: Test intervals We will test the sign of \( \frac{-5x + 8}{(x - 2)(x + 2)} \) in the intervals determined by the critical points: \( (-\infty, -2) \), \( (-2, \frac{8}{5}) \), \( (\frac{8}{5}, 2) \), and \( (2, \infty) \). 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \): \[ \frac{-5(-3) + 8}{(-3 - 2)(-3 + 2)} = \frac{15 + 8}{(-5)(-1)} = \frac{23}{5} > 0 \] 2. **Interval \( (-2, \frac{8}{5}) \)**: Choose \( x = 0 \): \[ \frac{-5(0) + 8}{(0 - 2)(0 + 2)} = \frac{8}{(-2)(2)} = \frac{8}{-4} < 0 \] 3. **Interval \( (\frac{8}{5}, 2) \)**: Choose \( x = 1.5 \): \[ \frac{-5(1.5) + 8}{(1.5 - 2)(1.5 + 2)} = \frac{-7.5 + 8}{(-0.5)(3.5)} = \frac{0.5}{-1.75} < 0 \] 4. **Interval \( (2, \infty) \)**: Choose \( x = 3 \): \[ \frac{-5(3) + 8}{(3 - 2)(3 + 2)} = \frac{-15 + 8}{(1)(5)} = \frac{-7}{5} < 0 \] ### Step 5: Combine results The solution to the first inequality is: \[ x \in (-2, \frac{8}{5}] \cup (2, \infty) \] ### Step 6: Solve the second inequality Now we solve the second part: \[ \frac{x^2 - 5x + 4}{x^2 - 4} \geq -1 \] Rearranging gives: \[ \frac{x^2 - 5x + 4 + (x^2 - 4)}{x^2 - 4} \geq 0 \] This simplifies to: \[ \frac{2x^2 - 5x}{(x - 2)(x + 2)} \geq 0 \] Factoring the numerator: \[ \frac{x(2x - 5)}{(x - 2)(x + 2)} \geq 0 \] ### Step 7: Find critical points Set the numerator and denominator to zero: 1. \( x = 0 \) 2. \( 2x - 5 = 0 \) gives \( x = \frac{5}{2} \) 3. \( x - 2 = 0 \) gives \( x = 2 \) 4. \( x + 2 = 0 \) gives \( x = -2 \) ### Step 8: Test intervals Test the sign of \( \frac{x(2x - 5)}{(x - 2)(x + 2)} \) in the intervals determined by the critical points: \( (-\infty, -2) \), \( (-2, 0) \), \( (0, 2) \), \( (2, \frac{5}{2}) \), and \( (\frac{5}{2}, \infty) \). 1. **Interval \( (-\infty, -2) \)**: Positive 2. **Interval \( (-2, 0) \)**: Negative 3. **Interval \( (0, 2) \)**: Negative 4. **Interval \( (2, \frac{5}{2}) \)**: Positive 5. **Interval \( (\frac{5}{2}, \infty) \)**: Positive ### Step 9: Combine results The solution to the second inequality is: \[ x \in (-\infty, -2) \cup [0, 2) \cup \left[\frac{5}{2}, \infty\right) \] ### Step 10: Find the intersection Now we find the intersection of the two solutions: 1. From the first inequality: \( (-2, \frac{8}{5}] \cup (2, \infty) \) 2. From the second inequality: \( (-\infty, -2) \cup [0, 2) \cup \left[\frac{5}{2}, \infty\right) \) The intersection gives: \[ [0, \frac{8}{5}] \cup \left[\frac{5}{2}, \infty\right) \] ### Final Answer Thus, the solution to the inequality \( \left| \frac{x^2 - 5x + 4}{x^2 - 4} \right| \leq 1 \) is: \[ [0, \frac{8}{5}] \cup \left[\frac{5}{2}, \infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

Solve (x^2-7x+12)/(2x^2-4x+5)>0

solve x^(2)- 5x + 4

Solve | x^2+x-4|=|x^2-4|+|x|dot

Solve |x^2+x-4|=|x^2-4|+|x|dot

Solve sqrt(x-2)(x^2-4x-5)=0.

Solve sqrt(x-2)(x^2-4x-5)=0.

Solve | x|+|(4-x^2)/(x)|=|4/x|

Solve |x^2-2x|+|x-4|>|x^2-3x+4|dot

Solve |x^2-2x|+|x-4|>|x^2-3x+4|dot

RESONANCE ENGLISH-DPP-QUESTION
  1. If Sn denotes the sum of first n terms of an arithmetic progression an...

    Text Solution

    |

  2. If log(x)a, a^(x//2), log(b)x are in G.P. then x is equal to

    Text Solution

    |

  3. Solve |(x^2-5x+4)/(x^2-4)|<=1

    Text Solution

    |

  4. Solve the following equations : (i) |x^(2)-2| = 2 |x-3| (ii) |x^(2...

    Text Solution

    |

  5. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Let the n^(th) term of a series be given by tn = (n^2 -n-2)/(n^2+3n),n...

    Text Solution

    |

  8. a, b and c are the first three terms of a geometric series. If the har...

    Text Solution

    |

  9. Consider an A.P. a(1), a(2), "……"a(n), "……." and the G.P. b(1),b(2)"…....

    Text Solution

    |

  10. If sum(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c))/(3), where a gt b gt c, the...

    Text Solution

    |

  11. If 5 sin x cos y = 1, 4 tan x = tan y, then

    Text Solution

    |

  12. Solve : (i) -2 le ||x^(2) +1| -3 | le 7 (ii) |x^(2) - 4x| le 5

    Text Solution

    |

  13. Number of roots of equation 3^(|x|)-|2-|x||=1 is a. 0 b. 2 c. 4 d. 7

    Text Solution

    |

  14. Study carefully the graph of a certain function The graph corresp...

    Text Solution

    |

  15. If the r^(th) term of a series is 1 + x + x^2 + .......+ x^(r-1) , the...

    Text Solution

    |

  16. If sin((6)/(5)x)=0 and cos((x)/(5))=0, then (n in Z)

    Text Solution

    |

  17. If sn=(1-4/1)(1-4/9)(1-4/25)......(1-4/((2n-1)^2)), where n in N, th...

    Text Solution

    |

  18. If S(n) = 1 + 3 + 7 + 13 + 21 + "….." upto n terms, then

    Text Solution

    |

  19. If a,b,c,d,e are five positive numbers, then

    Text Solution

    |

  20. Solve : (i) |x^(2)-2x|le x , (ii) (x^(2)-9)(|x|-2)le0

    Text Solution

    |