Home
Class 12
MATHS
If sum(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c...

If `sum_(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c))/(3)`, where `a gt b gt c`, then

A

`2b = c`

B

`a^(3)-8b^(3)+c^(3) = 8abc`

C

a is prime number

D

`(a-2b)^(2) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation \( \sum_{r=1}^{n} r(r+1) \) and express it in the form given in the question. ### Step 1: Rewrite the Summation The term \( r(r+1) \) can be rewritten as: \[ r(r+1) = r^2 + r \] Thus, we can express the summation as: \[ \sum_{r=1}^{n} r(r+1) = \sum_{r=1}^{n} (r^2 + r) = \sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \] ### Step 2: Use Known Formulas for Summations We know the formulas for the summation of the first \( n \) natural numbers and the summation of the squares of the first \( n \) natural numbers: - The sum of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] - The sum of the squares of the first \( n \) natural numbers: \[ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \] ### Step 3: Substitute the Formulas into the Summation Substituting these formulas into our expression, we get: \[ \sum_{r=1}^{n} r(r+1) = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \] ### Step 4: Simplify the Expression To combine the two terms, we need a common denominator. The common denominator here is 6: \[ \frac{n(n+1)(2n+1)}{6} + \frac{3n(n+1)}{6} = \frac{n(n+1)(2n+1 + 3)}{6} = \frac{n(n+1)(2n + 4)}{6} \] Now, we can factor out a 2 from \( 2n + 4 \): \[ = \frac{n(n+1) \cdot 2(n + 2)}{6} = \frac{n(n+1)(n+2)}{3} \] ### Step 5: Compare with the Given Expression The problem states that: \[ \sum_{r=1}^{n} r(r+1) = \frac{(n+a)(n+b)(n+c)}{3} \] From our derived expression, we have: \[ \frac{n(n+1)(n+2)}{3} \] This implies: \[ (n+a)(n+b)(n+c) = n(n+1)(n+2) \] ### Step 6: Expand the Right Side Expanding \( (n+a)(n+b)(n+c) \): \[ = n^3 + (a+b+c)n^2 + (ab+ac+bc)n + abc \] And expanding \( n(n+1)(n+2) \): \[ = n^3 + 3n^2 + 2n \] ### Step 7: Set Coefficients Equal Now we can equate coefficients: 1. \( a + b + c = 3 \) 2. \( ab + ac + bc = 2 \) 3. \( abc = 0 \) ### Step 8: Solve for \( a, b, c \) Since \( abc = 0 \), one of \( a, b, c \) must be zero. Let’s assume \( c = 0 \): - Then \( a + b = 3 \) - \( ab = 2 \) The numbers \( a \) and \( b \) can be solved using these equations. The roots of the quadratic \( x^2 - 3x + 2 = 0 \) are \( x = 1 \) and \( x = 2 \). Thus, we can assign: - \( a = 2 \) - \( b = 1 \) - \( c = 0 \) ### Conclusion Thus, we have \( a = 2 \), \( b = 1 \), and \( c = 0 \) with \( a > b > c \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

If sum_(t=1)^(1003) (r^(2) + 1)r! = a! - b(c!) where a, b, c in N the least value of (a + b + c) is pqrs then

If sum_(r=0)^(n) (pr+2).""^(n)C_(r)=(25)(64) where n, p in N , then (a) p=3 (b) p=4 (c) n=7 (d) n=6

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If sum_(r=1)^(n)r(r+1)+sum_(r=1)^(n)(r+1)(r+2)=(n(an^(2)+bn+c))/(3),(a,b,cinN) then (A) a + b + c = 24 (B) 2a + b - c = 0 (C) a - b + c= 6 (D) ab + bc + ca = 11

The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

If a + b = k, when a, b gt o and S(k, n) = sum _(r=0)^(n) r^(2) (""^(n) C_(r) ) a^(r) cdot b^(n-r) , then

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

If sum_(r=1)^n r(r+1)(2r+3)=a n^4+b n^3+c n^2+d n+e , then (a) a-b=d-c (b) e=0 (c) a , b-2//3, c-1 are in A.P. (d) (b+d)//a is an integer

If sum_(r=1)^n t_r= (n(n+1)(n+2))/3 then sum _(r=1)^oo 1/t_r= (A) -1 (B) 1 (C) 0 (D) none of these

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

RESONANCE ENGLISH-DPP-QUESTION
  1. a, b and c are the first three terms of a geometric series. If the har...

    Text Solution

    |

  2. Consider an A.P. a(1), a(2), "……"a(n), "……." and the G.P. b(1),b(2)"…....

    Text Solution

    |

  3. If sum(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c))/(3), where a gt b gt c, the...

    Text Solution

    |

  4. If 5 sin x cos y = 1, 4 tan x = tan y, then

    Text Solution

    |

  5. Solve : (i) -2 le ||x^(2) +1| -3 | le 7 (ii) |x^(2) - 4x| le 5

    Text Solution

    |

  6. Number of roots of equation 3^(|x|)-|2-|x||=1 is a. 0 b. 2 c. 4 d. 7

    Text Solution

    |

  7. Study carefully the graph of a certain function The graph corresp...

    Text Solution

    |

  8. If the r^(th) term of a series is 1 + x + x^2 + .......+ x^(r-1) , the...

    Text Solution

    |

  9. If sin((6)/(5)x)=0 and cos((x)/(5))=0, then (n in Z)

    Text Solution

    |

  10. If sn=(1-4/1)(1-4/9)(1-4/25)......(1-4/((2n-1)^2)), where n in N, th...

    Text Solution

    |

  11. If S(n) = 1 + 3 + 7 + 13 + 21 + "….." upto n terms, then

    Text Solution

    |

  12. If a,b,c,d,e are five positive numbers, then

    Text Solution

    |

  13. Solve : (i) |x^(2)-2x|le x , (ii) (x^(2)-9)(|x|-2)le0

    Text Solution

    |

  14. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  15. It the first and (2n-1)^(th) terms of an A.P.,a G.P. and an H.P. of po...

    Text Solution

    |

  16. If p ,q ,r are positive and are in A.P., the roots of quadratic equati...

    Text Solution

    |

  17. In the given figure AB, BC, BD cannot be in

    Text Solution

    |

  18. If x epsilon R, the numbers 2^(1+x)+2^(1-x), (b)/(2), 36^(x)+36^(-x) ...

    Text Solution

    |

  19. Is 184 a term of the sequence 3,7,11, ... ?

    Text Solution

    |

  20. Suba Rao started work in 1995 at an annual salary of Rs 5000 and re...

    Text Solution

    |