Home
Class 12
MATHS
If sn=(1-4/1)(1-4/9)(1-4/25)......(1-4/(...

If `s_n=(1-4/1)(1-4/9)(1-4/25)......(1-4/((2n-1)^2)),` where `n in N,` then

A

`S_(n) = (1+2n)/(1-2n)`

B

`S_(n) = (1-2n)/(1+2n)`

C

`S_(oo) = - 1`

D

`S_(oo) = - 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression given by \( s_n = (1 - \frac{4}{1})(1 - \frac{4}{9})(1 - \frac{4}{25}) \ldots (1 - \frac{4}{(2n-1)^2}) \). ### Step-by-Step Solution: 1. **Rewrite the Terms**: Each term in the product can be rewritten using the identity \( 1 - a^2 = (1 - a)(1 + a) \). Here, we can express \( 4 \) as \( 2^2 \): \[ s_n = \prod_{k=1}^{n} \left(1 - \frac{4}{(2k-1)^2}\right) = \prod_{k=1}^{n} \left(1 - \left(\frac{2}{2k-1}\right)^2\right) \] 2. **Apply the Difference of Squares**: Using the identity \( a^2 - b^2 = (a - b)(a + b) \), we can rewrite each term: \[ 1 - \left(\frac{2}{2k-1}\right)^2 = \left(1 - \frac{2}{2k-1}\right)\left(1 + \frac{2}{2k-1}\right) \] Thus, we have: \[ s_n = \prod_{k=1}^{n} \left( \left(1 - \frac{2}{2k-1}\right)\left(1 + \frac{2}{2k-1}\right) \right) \] 3. **Simplify Each Factor**: Now, let's simplify each factor: - The first factor: \[ 1 - \frac{2}{2k-1} = \frac{(2k-1) - 2}{2k-1} = \frac{2k-3}{2k-1} \] - The second factor: \[ 1 + \frac{2}{2k-1} = \frac{(2k-1) + 2}{2k-1} = \frac{2k+1}{2k-1} \] 4. **Combine the Factors**: Therefore, we can write: \[ s_n = \prod_{k=1}^{n} \left(\frac{2k-3}{2k-1} \cdot \frac{2k+1}{2k-1}\right) \] 5. **Simplify the Product**: The product can be separated: \[ s_n = \prod_{k=1}^{n} \frac{(2k-3)(2k+1)}{(2k-1)^2} \] This product will have many terms that cancel out. 6. **Final Expression**: After simplifying, we find that: \[ s_n = \frac{(-1)(2n+1)}{(2n-1)} \] Therefore: \[ s_n = \frac{1 + 2n}{1 - 2n} \] ### Final Answer: \[ s_n = \frac{1 + 2n}{1 - 2n} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Let S_(n)=1+2+3+...+n " and " P_(n)=(S_(2))/(S_(2)-1).(S_(3))/(S_(3)-1).(S_(4))/(S_(4)-1)...(S_(n))/(S_(n)-1) , where n inN,(nge2) Then underset(ntooo)limP_(n) =__________.

If a_(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+(1)/(5)+ . . . .+(1)/(2^(n)-1) , then

Let S_n=1+2+3++n and P_n=(S_2)/(S_2-1)dot(S_3)/(S_3-1)dot(S_4)/(S_4-1)...(S_n)/(S_n-1) Where n in N ,(ngeq2)dot Then ("lim")_(n→oo)P_n=______

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

If S_n=1/(2n)+1/(sqrt(4n^2-1))+1/(sqrt(4n^2-4))++1/(sqrt(3n^2+2n-1)),n in N , then ("lim")_(nvecoo)S_n is equal to pi/2 (b) 2 (c) 1 (d) pi/6

If S_n=[1/(1+sqrt(n))+1/(2+sqrt(2n))+....+1/(n+sqrt(n^2))] then (lim)_(n ->oo)S_n is equal to (A) log 2 (B) log4 (C) log8 (D) none of these

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N then the remainder when f (1) + f (2) + f (3) + ..... + f (60) is divided by 9 is.

If total number of runs secored is n matches is (n+1)/(4) (2^(n+1) -n-2) where n ge 1 , and the runs scored in the k^(th) match is given by k.2^(n+1 - k) , where 1 le k le n, n is

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

RESONANCE ENGLISH-DPP-QUESTION
  1. If the r^(th) term of a series is 1 + x + x^2 + .......+ x^(r-1) , the...

    Text Solution

    |

  2. If sin((6)/(5)x)=0 and cos((x)/(5))=0, then (n in Z)

    Text Solution

    |

  3. If sn=(1-4/1)(1-4/9)(1-4/25)......(1-4/((2n-1)^2)), where n in N, th...

    Text Solution

    |

  4. If S(n) = 1 + 3 + 7 + 13 + 21 + "….." upto n terms, then

    Text Solution

    |

  5. If a,b,c,d,e are five positive numbers, then

    Text Solution

    |

  6. Solve : (i) |x^(2)-2x|le x , (ii) (x^(2)-9)(|x|-2)le0

    Text Solution

    |

  7. If alpha,beta,gamma,delta are the smallest positive angles in ascendin...

    Text Solution

    |

  8. It the first and (2n-1)^(th) terms of an A.P.,a G.P. and an H.P. of po...

    Text Solution

    |

  9. If p ,q ,r are positive and are in A.P., the roots of quadratic equati...

    Text Solution

    |

  10. In the given figure AB, BC, BD cannot be in

    Text Solution

    |

  11. If x epsilon R, the numbers 2^(1+x)+2^(1-x), (b)/(2), 36^(x)+36^(-x) ...

    Text Solution

    |

  12. Is 184 a term of the sequence 3,7,11, ... ?

    Text Solution

    |

  13. Suba Rao started work in 1995 at an annual salary of Rs 5000 and re...

    Text Solution

    |

  14. Solve : (|x-3|)/(x^(2)-5x+6) gt 2

    Text Solution

    |

  15. Solve : |x| - |x-2| ge 1

    Text Solution

    |

  16. Draw graph of the following expression. Also find extremum value if it...

    Text Solution

    |

  17. solving the following equations : (i) |x-3| = x-1 (ii) |x^(2)-3x|=...

    Text Solution

    |

  18. If (1)/(|a|)gt 1/b, then |a| le b, where a & b are non-zero real numbe...

    Text Solution

    |

  19. Solve the folowing equations |x|+2|x-6|=12

    Text Solution

    |

  20. ||x+3|-5|=2

    Text Solution

    |