Home
Class 12
MATHS
If alpha,beta,gamma,delta are the smalle...

If `alpha,beta,gamma,delta` are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity `k ,` then the value of `4sinalpha/2+3sinbeta/2+2singamma/2+sindelta/2` is equal to `2sqrt(1-k)` (b) `2sqrt(1+k)` `(sqrt(1-k))/2` (d) none of these

A

`2sqrt(1-k)`

B

`2sqrt(1+k)`

C

`2sqrt(k)`

D

`2k`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma,delta are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k , then the value of 4sin(alpha/2)+3sin(beta/2)+2sin(gamma/2)+sin(delta/2) is equal to (a) 2sqrt(1-k) (b) 2sqrt(1+k) (c) (sqrt(1-k))/2 (d) none of these

If cos28^0+sin28^0=k^3, t h e ncos17^0 is equal to (a) (k^3)/(sqrt(2)) (b) -(k^3)/(sqrt(2)) (c) +-(k^3)/(sqrt(2)) (d) none of these

If cos28^0+sin28^0=k^3, t h e ncos17^0 is equal to (k^3)/(sqrt(2)) (b) -(k^3)/(sqrt(2)) (c) +-(k^3)/(sqrt(2)) (d) none of these

If alpha,beta,gamma are ccute angles and costheta=sinbeta//sinalpha,cosvarphi=singammasinalphaa n dcos(theta-varphi)=sinbetasingamma , then the value of tan^2alpha-tan^2beta-tan^2gamma is equal to -1 (b) 0 (c) 1 (d) 2

In a triangle ABC, a^4+b^4+c^4=2a^2b^2+b^2c^2+2a^2c^2 then sinA is equal to (A) 1/sqrt(2) (B) 1/2 (C) sqrt(3)/2 (D) none of these

If alpha,beta,gamma are acute angles and costheta=sinbeta//sinalpha,cosvarphi=singamma//sinalpha and cos(theta-varphi) = sinbetasingamma , then the value of tan^2alpha-tan^2beta-tan^2gamma is equal to (a) -1 (b) 0 (c) 1 (d) 2

If alpha and beta are the solution of sinx=-(1)/(2) in [0, 2pi] and alpha and gamma are the solutions of cos x=-(sqrt3)/(2) in [0, 2pi] , then the value of (alpha+beta)/(|beta-gamma|) is equal to

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If alpha, beta, gamma in [0,2pi] , then the sum of all possible values of alpha, beta, gamma if sin alpha=-1/sqrt(2), cos beta=-1/sqrt(2), tan gamma =-sqrt(3) , is