Home
Class 12
MATHS
Solve : |x| - |x-2| ge 1...

Solve : `|x| - |x-2| ge 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x| - |x-2| \geq 1 \), we will follow these steps: ### Step 1: Identify Critical Points The critical points for the absolute value functions occur when the expressions inside the absolute values equal zero. 1. For \( |x| \): - \( |x| = 0 \) when \( x = 0 \). 2. For \( |x-2| \): - \( |x-2| = 0 \) when \( x = 2 \). Thus, the critical points are \( x = 0 \) and \( x = 2 \). ### Step 2: Divide the Number Line into Intervals We will divide the number line into three intervals based on the critical points: 1. \( (-\infty, 0) \) 2. \( [0, 2) \) 3. \( [2, \infty) \) ### Step 3: Analyze Each Interval #### Interval 1: \( (-\infty, 0) \) - Choose a test point, e.g., \( x = -1 \). - Calculate \( |x| - |x-2| \): \[ |x| = -x = 1 \quad \text{(since } x \text{ is negative)} \] \[ |x-2| = |(-1)-2| = | -3 | = 3 \] Thus, \[ |x| - |x-2| = 1 - 3 = -2 \] - Check the inequality: \[ -2 \geq 1 \quad \text{(False)} \] - Conclusion: No solutions in \( (-\infty, 0) \). #### Interval 2: \( [0, 2) \) - Choose a test point, e.g., \( x = 1 \). - Calculate \( |x| - |x-2| \): \[ |x| = 1 \quad \text{(since } x \text{ is positive)} \] \[ |x-2| = |1-2| = 1 \] Thus, \[ |x| - |x-2| = 1 - 1 = 0 \] - Check the inequality: \[ 0 \geq 1 \quad \text{(False)} \] - Conclusion: No solutions in \( [0, 2) \). #### Interval 3: \( [2, \infty) \) - Choose a test point, e.g., \( x = 3 \). - Calculate \( |x| - |x-2| \): \[ |x| = 3 \quad \text{(since } x \text{ is positive)} \] \[ |x-2| = |3-2| = 1 \] Thus, \[ |x| - |x-2| = 3 - 1 = 2 \] - Check the inequality: \[ 2 \geq 1 \quad \text{(True)} \] - Conclusion: Solutions exist in \( [2, \infty) \). ### Step 4: Combine Results From our analysis: - No solutions in \( (-\infty, 0) \). - No solutions in \( [0, 2) \). - Solutions in \( [2, \infty) \). ### Final Solution The solution to the inequality \( |x| - |x-2| \geq 1 \) is: \[ \boxed{[2, \infty)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

solve: |x-2|+|x-4| ge 8

Solve |x-1|+|x-2| ge 4

Solve |x-1|+|x-2| ge 4

Solve |x-1|+|x-2| ge 4

Solve : | x - 1 |+ |x -2| ge 3

Solve : (|x|-1)/(|x|-2) ge 0, x ne pm 2

Solve : (|x|-1)/(|x|-2) ge 0, x ne pm 2

Solve |x-3| ge 2

Solve: (-1)/(|x|-2) ge 1 .

Solve ||x-1| -5| ge 2 .

RESONANCE ENGLISH-DPP-QUESTION
  1. Suba Rao started work in 1995 at an annual salary of Rs 5000 and re...

    Text Solution

    |

  2. Solve : (|x-3|)/(x^(2)-5x+6) gt 2

    Text Solution

    |

  3. Solve : |x| - |x-2| ge 1

    Text Solution

    |

  4. Draw graph of the following expression. Also find extremum value if it...

    Text Solution

    |

  5. solving the following equations : (i) |x-3| = x-1 (ii) |x^(2)-3x|=...

    Text Solution

    |

  6. If (1)/(|a|)gt 1/b, then |a| le b, where a & b are non-zero real numbe...

    Text Solution

    |

  7. Solve the folowing equations |x|+2|x-6|=12

    Text Solution

    |

  8. ||x+3|-5|=2

    Text Solution

    |

  9. |||x-2|-2|-2|=2

    Text Solution

    |

  10. If sum(n=1)^(2013)tan(theta/(2^(n)))sec((theta)/(2^(n-1))) = tan((thet...

    Text Solution

    |

  11. The minimum value of the expression |x-p|+|x-15|+|x-p-15| for ' x ' in...

    Text Solution

    |

  12. If the graph of the function y = f(x) is as shown : The graph of ...

    Text Solution

    |

  13. If A, B, C, D be the angles of a quadrilateral, prove that : (tanA+tan...

    Text Solution

    |

  14. If the sum of n term of the series (5)/(1.2.3) + (6)/(2.3.4) + ( 7)/(3...

    Text Solution

    |

  15. If the 8th term of an A.P. is 31 and the 15th term is 16 more than ...

    Text Solution

    |

  16. The coefficient of the quadratic equation a x^2+(a+d)x+(a+2d)=0 are co...

    Text Solution

    |

  17. Let f(r) = sum(j=2)^(2008) (1)/(j^(r)) = (1)/(2^(r))+(1)/(3^(r))+"…."+...

    Text Solution

    |

  18. If sinalphacosbeta=-1/2 then find the range of values of cosalphasinbe...

    Text Solution

    |

  19. -cos(A+B)cos(B-A) =

    Text Solution

    |

  20. Number of roots of (x^(2)+5x+7)(-x^(2)+3x-4) = 0

    Text Solution

    |