Home
Class 12
MATHS
If sum(n=1)^(2013)tan(theta/(2^(n)))sec(...

If `sum_(n=1)^(2013)tan(theta/(2^(n)))sec((theta)/(2^(n-1))) = tan((theta)/(2^(a)))-tan((theta)/(2^(b)))` then `(b+a)` equals

A

2014

B

2012

C

2013

D

2014

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equation \[ \sum_{n=1}^{2013} \tan\left(\frac{\theta}{2^n}\right) \sec\left(\frac{\theta}{2^{n-1}}\right) = \tan\left(\frac{\theta}{2^a}\right) - \tan\left(\frac{\theta}{2^b}\right), \] we will follow these steps: ### Step 1: Rewrite the Left-Hand Side We start with the left-hand side: \[ \sum_{n=1}^{2013} \tan\left(\frac{\theta}{2^n}\right) \sec\left(\frac{\theta}{2^{n-1}}\right). \] Recall that \(\sec(x) = \frac{1}{\cos(x)}\), so we can rewrite the term: \[ \sec\left(\frac{\theta}{2^{n-1}}\right) = \frac{1}{\cos\left(\frac{\theta}{2^{n-1}}\right)}. \] Thus, we have: \[ \sum_{n=1}^{2013} \tan\left(\frac{\theta}{2^n}\right) \cdot \frac{1}{\cos\left(\frac{\theta}{2^{n-1}}\right)}. \] ### Step 2: Use the Identity for \(\tan\) and \(\sec\) Using the identity \(\tan(x) = \frac{\sin(x)}{\cos(x)}\), we can express the left-hand side as: \[ \sum_{n=1}^{2013} \frac{\sin\left(\frac{\theta}{2^n}\right)}{\cos\left(\frac{\theta}{2^n}\right) \cos\left(\frac{\theta}{2^{n-1}}\right)}. \] ### Step 3: Simplify the Sum We can simplify the sum further. Notice that: \[ \tan\left(\frac{\theta}{2^n}\right) \sec\left(\frac{\theta}{2^{n-1}}\right) = \frac{\sin\left(\frac{\theta}{2^n}\right)}{\cos\left(\frac{\theta}{2^n}\right)} \cdot \frac{1}{\cos\left(\frac{\theta}{2^{n-1}}\right)}. \] This can be rewritten as: \[ \frac{\sin\left(\frac{\theta}{2^n}\right)}{\cos\left(\frac{\theta}{2^n}\right) \cos\left(\frac{\theta}{2^{n-1}}\right)} = \tan\left(\frac{\theta}{2^n}\right) \sec\left(\frac{\theta}{2^{n-1}}\right). \] ### Step 4: Recognize the Pattern Notice that this sum telescopes. Each term cancels with the next, leading to: \[ \tan\left(\frac{\theta}{2^1}\right) - \tan\left(\frac{\theta}{2^{2014}}\right). \] ### Step 5: Set Equal to Right-Hand Side Now, we set this equal to the right-hand side: \[ \tan\left(\frac{\theta}{2^1}\right) - \tan\left(\frac{\theta}{2^{2014}}\right) = \tan\left(\frac{\theta}{2^a}\right) - \tan\left(\frac{\theta}{2^b}\right). \] ### Step 6: Identify \(a\) and \(b\) From the left-hand side, we can see that: - The first term corresponds to \(a = 1\), - The last term corresponds to \(b = 2014\). ### Step 7: Calculate \(a + b\) Now, we find \(a + b\): \[ a + b = 1 + 2014 = 2015. \] ### Final Answer Thus, the value of \(b + a\) is: \[ \boxed{2015}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

If sum_(n-1)^(2013)"tan"(theta/(2^n))s e c(theta/(2^(n-1)))=tan(theta/(2^a))-tan(theta/(2^b)) then (b+a) equals (a)2014 (b) 2012 (c) 2013 (d) 2014

1/(sec(theta)-tan(theta))+1/(sec(theta)+tan(theta)) =

Prove that : (sec 8theta - 1)/(sec 4theta - 1) = (tan 8theta)/(tan 2theta)

Prove that: (sec8theta-1)/(sec4theta-1)=(tan8theta)/(tan2theta)

Prove that: (sec8theta-1)/(sec4theta-1)=(tan8theta)/(tan2theta)

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Find the sum n terms of seires tan theta+1/2tan(theta/2 )+1/(2^2)tan(theta/(2^2))+1/(2^3)tan(theta/(2^3))+....

Prove that (1+sin 2theta)/(1-sin 2theta) = ((1+tan theta)/(1-tan theta))^2

Solve sec theta-1=(sqrt(2)-1) tan theta .

Prove that tan ((pi )/(4) + (theta )/(2) ) + tan ((pi )/(4) - (theta)/(2)) = 2 sec theta.

RESONANCE ENGLISH-DPP-QUESTION
  1. ||x+3|-5|=2

    Text Solution

    |

  2. |||x-2|-2|-2|=2

    Text Solution

    |

  3. If sum(n=1)^(2013)tan(theta/(2^(n)))sec((theta)/(2^(n-1))) = tan((thet...

    Text Solution

    |

  4. The minimum value of the expression |x-p|+|x-15|+|x-p-15| for ' x ' in...

    Text Solution

    |

  5. If the graph of the function y = f(x) is as shown : The graph of ...

    Text Solution

    |

  6. If A, B, C, D be the angles of a quadrilateral, prove that : (tanA+tan...

    Text Solution

    |

  7. If the sum of n term of the series (5)/(1.2.3) + (6)/(2.3.4) + ( 7)/(3...

    Text Solution

    |

  8. If the 8th term of an A.P. is 31 and the 15th term is 16 more than ...

    Text Solution

    |

  9. The coefficient of the quadratic equation a x^2+(a+d)x+(a+2d)=0 are co...

    Text Solution

    |

  10. Let f(r) = sum(j=2)^(2008) (1)/(j^(r)) = (1)/(2^(r))+(1)/(3^(r))+"…."+...

    Text Solution

    |

  11. If sinalphacosbeta=-1/2 then find the range of values of cosalphasinbe...

    Text Solution

    |

  12. -cos(A+B)cos(B-A) =

    Text Solution

    |

  13. Number of roots of (x^(2)+5x+7)(-x^(2)+3x-4) = 0

    Text Solution

    |

  14. If the roots of Quadratic i^(2)x^(2)+5ix-6 are a+ib and c +id (a,b,c,d...

    Text Solution

    |

  15. S(10) = cos'(pi)/(180) + cos'(3pi)/(180) + "….." cos '(19pi)/(180)

    Text Solution

    |

  16. Find the sum of series 31^3+32^3+…..+50^3

    Text Solution

    |

  17. Find maximum value of a^(2)b^(3) if a+b=2. When a & b are positive num...

    Text Solution

    |

  18. Find the roots of the equation x^(2) + ix - 1 - i = 0

    Text Solution

    |

  19. solve ||x-2|-1|lt 2 "(a) (2,5) (b)(-1, 5) (c) (-2...

    Text Solution

    |

  20. If x^(3) + 2x-3 = 0 then then number of real values of 'x' satisfying ...

    Text Solution

    |