Home
Class 12
MATHS
Let f(r) = sum(j=2)^(2008) (1)/(j^(r)) =...

Let `f(r) = sum_(j=2)^(2008) (1)/(j^(r)) = (1)/(2^(r))+(1)/(3^(r))+"…."+(1)/(2008^(r))`. Find `sum_(k=2)^(oo) f(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( \sum_{k=2}^{\infty} f(k) \) where \( f(r) = \sum_{j=2}^{2008} \frac{1}{j^r} \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(r) = \sum_{j=2}^{2008} \frac{1}{j^r} = \frac{1}{2^r} + \frac{1}{3^r} + \ldots + \frac{1}{2008^r} \] 2. **Write the sum we need to evaluate**: \[ \sum_{k=2}^{\infty} f(k) = \sum_{k=2}^{\infty} \left( \frac{1}{2^k} + \frac{1}{3^k} + \ldots + \frac{1}{2008^k} \right) \] 3. **Rearranging the sum**: We can interchange the order of summation: \[ \sum_{k=2}^{\infty} f(k) = \sum_{j=2}^{2008} \sum_{k=2}^{\infty} \frac{1}{j^k} \] 4. **Evaluate the inner sum**: The inner sum \( \sum_{k=2}^{\infty} \frac{1}{j^k} \) is a geometric series with first term \( \frac{1}{j^2} \) and common ratio \( \frac{1}{j} \): \[ \sum_{k=2}^{\infty} \frac{1}{j^k} = \frac{\frac{1}{j^2}}{1 - \frac{1}{j}} = \frac{\frac{1}{j^2}}{\frac{j-1}{j}} = \frac{1}{j^2} \cdot \frac{j}{j-1} = \frac{1}{j(j-1)} \] 5. **Substituting back into the sum**: Now we substitute this back into our sum: \[ \sum_{k=2}^{\infty} f(k) = \sum_{j=2}^{2008} \frac{1}{j(j-1)} \] 6. **Simplifying the sum**: The term \( \frac{1}{j(j-1)} \) can be rewritten using partial fractions: \[ \frac{1}{j(j-1)} = \frac{1}{j-1} - \frac{1}{j} \] Therefore, the sum becomes: \[ \sum_{j=2}^{2008} \left( \frac{1}{j-1} - \frac{1}{j} \right) \] 7. **Recognizing the telescoping series**: This is a telescoping series: \[ \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \ldots + \left( \frac{1}{2007} - \frac{1}{2008} \right) \] Most terms cancel out, leaving: \[ 1 - \frac{1}{2008} \] 8. **Final Calculation**: Thus, we have: \[ \sum_{k=2}^{\infty} f(k) = 1 - \frac{1}{2008} = \frac{2008 - 1}{2008} = \frac{2007}{2008} \] ### Final Answer: \[ \sum_{k=2}^{\infty} f(k) = \frac{2007}{2008} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

IF f(r )=1+(1)/(2)+(1)/(3)+"...."+(1)/(r ) and f(0)=0 , find sum _(r=1)^(n)(2r+1)f(r ) .

sum_(r=1)^10 r/(1-3r^2+r^4)

If sum_(r=1)^(oo) (C^r)/(r!) =1 then C =

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If a = sum_(r=1)^(oo) 1/(r^(2)), b = sum_(r=1)^(oo) 1/((2r-1)^(2)), then (3a)/b is equal to _____

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

sum _(r = 2) ^(oo) (1)/(r ^(2) - 1) is equal to :

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value of K + G is

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

RESONANCE ENGLISH-DPP-QUESTION
  1. If the 8th term of an A.P. is 31 and the 15th term is 16 more than ...

    Text Solution

    |

  2. The coefficient of the quadratic equation a x^2+(a+d)x+(a+2d)=0 are co...

    Text Solution

    |

  3. Let f(r) = sum(j=2)^(2008) (1)/(j^(r)) = (1)/(2^(r))+(1)/(3^(r))+"…."+...

    Text Solution

    |

  4. If sinalphacosbeta=-1/2 then find the range of values of cosalphasinbe...

    Text Solution

    |

  5. -cos(A+B)cos(B-A) =

    Text Solution

    |

  6. Number of roots of (x^(2)+5x+7)(-x^(2)+3x-4) = 0

    Text Solution

    |

  7. If the roots of Quadratic i^(2)x^(2)+5ix-6 are a+ib and c +id (a,b,c,d...

    Text Solution

    |

  8. S(10) = cos'(pi)/(180) + cos'(3pi)/(180) + "….." cos '(19pi)/(180)

    Text Solution

    |

  9. Find the sum of series 31^3+32^3+…..+50^3

    Text Solution

    |

  10. Find maximum value of a^(2)b^(3) if a+b=2. When a & b are positive num...

    Text Solution

    |

  11. Find the roots of the equation x^(2) + ix - 1 - i = 0

    Text Solution

    |

  12. solve ||x-2|-1|lt 2 "(a) (2,5) (b)(-1, 5) (c) (-2...

    Text Solution

    |

  13. If x^(3) + 2x-3 = 0 then then number of real values of 'x' satisfying ...

    Text Solution

    |

  14. solve for x |x+1| + |x-2| + |x-5| = 4

    Text Solution

    |

  15. If |a-b| gt ||a|-|b|| then

    Text Solution

    |

  16. The inequation sqrt(f(x)) gt g(x), is equivalent to the

    Text Solution

    |

  17. Prove that sintheta+s in3theta+sin5theta++sin(2n-1)theta=(sin^2ntheta)...

    Text Solution

    |

  18. If a,b,c, in R and equations ax^(2) + bx + c =0 and x^(2) + 2x + 9 = 0...

    Text Solution

    |

  19. Find the value of cos theta. cos 2theta. cos 2^(2)theta . cos 2^(3)the...

    Text Solution

    |

  20. Evaluate ((cos15^(@)-sin15^(@)+1)/(cos15^(@)+sin15^(@)+1))((1+sin15^(@...

    Text Solution

    |