Home
Class 12
MATHS
Find the roots of the equation x^(2) + i...

Find the roots of the equation `x^(2) + ix - 1 - i = 0`

A

1 & i

B

i & -i

C

`1- i & 1`

D

`1 & -i - 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the roots of the equation \( x^2 + ix - 1 - i = 0 \), we will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 1: Identify coefficients In the given equation, we can identify: - \( a = 1 \) (coefficient of \( x^2 \)) - \( b = i \) (coefficient of \( x \)) - \( c = - (1 + i) \) (constant term) ### Step 2: Substitute coefficients into the quadratic formula Now we substitute \( a \), \( b \), and \( c \) into the quadratic formula: \[ x = \frac{-i \pm \sqrt{i^2 - 4 \cdot 1 \cdot (- (1 + i))}}{2 \cdot 1} \] ### Step 3: Calculate the discriminant Next, we need to calculate the discriminant \( b^2 - 4ac \): \[ b^2 = i^2 = -1 \] \[ 4ac = 4 \cdot 1 \cdot - (1 + i) = -4(1 + i) = -4 - 4i \] Now, substituting these values into the discriminant: \[ b^2 - 4ac = -1 + 4 + 4i = 3 + 4i \] ### Step 4: Substitute back into the formula Now we substitute back into the formula: \[ x = \frac{-i \pm \sqrt{3 + 4i}}{2} \] ### Step 5: Simplify the square root To simplify \( \sqrt{3 + 4i} \), we can express it in the form \( a + bi \) and solve for \( a \) and \( b \): Let \( \sqrt{3 + 4i} = a + bi \). Then squaring both sides gives: \[ 3 + 4i = a^2 - b^2 + 2abi \] This gives us two equations: 1. \( a^2 - b^2 = 3 \) 2. \( 2ab = 4 \) → \( ab = 2 \) From \( ab = 2 \), we can express \( b = \frac{2}{a} \) and substitute into the first equation: \[ a^2 - \left(\frac{2}{a}\right)^2 = 3 \] Multiplying through by \( a^2 \) to eliminate the fraction: \[ a^4 - 4 = 3a^2 \] Rearranging gives: \[ a^4 - 3a^2 - 4 = 0 \] Letting \( y = a^2 \), we have: \[ y^2 - 3y - 4 = 0 \] ### Step 6: Solve the quadratic for \( y \) Using the quadratic formula: \[ y = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2} \] This gives us: \[ y = 4 \quad \text{or} \quad y = -1 \] Since \( y = a^2 \), we discard \( y = -1 \) and take \( y = 4 \), thus \( a = 2 \). Now substituting back to find \( b \): \[ ab = 2 \implies 2b = 2 \implies b = 1 \] So, \( \sqrt{3 + 4i} = 2 + i \). ### Step 7: Substitute back into the formula Now substituting back: \[ x = \frac{-i \pm (2 + i)}{2} \] This gives us two cases: 1. \( x = \frac{-i + 2 + i}{2} = \frac{2}{2} = 1 \) 2. \( x = \frac{-i - 2 - i}{2} = \frac{-2i - 2}{2} = -1 - i \) ### Final Roots Thus, the roots of the equation \( x^2 + ix - 1 - i = 0 \) are: \[ x = 1 \quad \text{and} \quad x = -1 - i \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Find the roots of the equation 2x^2 - x + 1/8 = 0

Find the roots of the equation x^2+7x-1=0

Find the roots of the equation 3x^2+6x+3=0

Find the roots of the equation x^2+7x+10=0 .

Find the roots of the equation x^2 -10x+25=0

Find the roots of the equations. Q. 2x^(2)+x-3=0

The roots of the equation x^(2) +6ix-9=0 are :

Find the root of the equation |x-1|^(x^(2)+x-2)=1

Find the quadratic equation whose roots are the reciprocals of the roots of the equation x^(2) - cx + b = 0

If x = 1 + i is a root of the equation x^(2) - ix - 1-i = 0 then the other real root is

RESONANCE ENGLISH-DPP-QUESTION
  1. Find the sum of series 31^3+32^3+…..+50^3

    Text Solution

    |

  2. Find maximum value of a^(2)b^(3) if a+b=2. When a & b are positive num...

    Text Solution

    |

  3. Find the roots of the equation x^(2) + ix - 1 - i = 0

    Text Solution

    |

  4. solve ||x-2|-1|lt 2 "(a) (2,5) (b)(-1, 5) (c) (-2...

    Text Solution

    |

  5. If x^(3) + 2x-3 = 0 then then number of real values of 'x' satisfying ...

    Text Solution

    |

  6. solve for x |x+1| + |x-2| + |x-5| = 4

    Text Solution

    |

  7. If |a-b| gt ||a|-|b|| then

    Text Solution

    |

  8. The inequation sqrt(f(x)) gt g(x), is equivalent to the

    Text Solution

    |

  9. Prove that sintheta+s in3theta+sin5theta++sin(2n-1)theta=(sin^2ntheta)...

    Text Solution

    |

  10. If a,b,c, in R and equations ax^(2) + bx + c =0 and x^(2) + 2x + 9 = 0...

    Text Solution

    |

  11. Find the value of cos theta. cos 2theta. cos 2^(2)theta . cos 2^(3)the...

    Text Solution

    |

  12. Evaluate ((cos15^(@)-sin15^(@)+1)/(cos15^(@)+sin15^(@)+1))((1+sin15^(@...

    Text Solution

    |

  13. Which of the following is true ?

    Text Solution

    |

  14. If tan alpha + tanB + tanC = tanA tanB tanC, then

    Text Solution

    |

  15. Which of the followintg is true if A+B+C = pi

    Text Solution

    |

  16. If a1x^2 + b1 x + c1 = 0 and a2x^2 + b2 x + c2 = 0 has a common root...

    Text Solution

    |

  17. Find the average value of 2^(@),sin4^(@),sin6^(@)........sin180^(@),

    Text Solution

    |

  18. Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^...

    Text Solution

    |

  19. Find maximum and minimum values of 2sin(theta+(pi)/(6))+sqrt(3)cos(the...

    Text Solution

    |

  20. Solve (tan3x-tan2x)/(1+tan3xtan2x ')=1

    Text Solution

    |