Home
Class 12
MATHS
Determine all pairs (a,b) of real number...

Determine all pairs (a,b) of real numbers such that `10, a,b,ab` are in arithmetic progression .

Text Solution

AI Generated Solution

The correct Answer is:
To determine all pairs \((a, b)\) of real numbers such that \(10, a, b, ab\) are in arithmetic progression, we can follow these steps: ### Step 1: Understand the condition for arithmetic progression (AP) For four numbers \(x_1, x_2, x_3, x_4\) to be in AP, the condition is: \[ 2x_2 = x_1 + x_3 \quad \text{and} \quad 2x_3 = x_2 + x_4 \] In our case, we have \(x_1 = 10\), \(x_2 = a\), \(x_3 = b\), and \(x_4 = ab\). ### Step 2: Set up the equations using the AP condition From the first condition: \[ 2a = 10 + b \quad \text{(1)} \] From the second condition: \[ 2b = a + ab \quad \text{(2)} \] ### Step 3: Solve equation (1) for \(b\) Rearranging equation (1): \[ b = 2a - 10 \quad \text{(3)} \] ### Step 4: Substitute \(b\) from equation (3) into equation (2) Substituting \(b\) in equation (2): \[ 2(2a - 10) = a + a(2a - 10) \] Expanding both sides: \[ 4a - 20 = a + 2a^2 - 10a \] Rearranging gives: \[ 2a^2 - 6a + 20 = 0 \] ### Step 5: Simplify the quadratic equation Dividing the entire equation by 2: \[ a^2 - 3a + 10 = 0 \] ### Step 6: Calculate the discriminant The discriminant \(\Delta\) of the quadratic equation \(ax^2 + bx + c = 0\) is given by: \[ \Delta = b^2 - 4ac \] For our equation: \[ \Delta = (-3)^2 - 4 \cdot 1 \cdot 10 = 9 - 40 = -31 \] Since the discriminant is negative, there are no real solutions for \(a\). ### Conclusion Thus, there are no pairs \((a, b)\) of real numbers such that \(10, a, b, ab\) are in arithmetic progression. ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

a,b,c are positive real numbers forming a. G.P. If ax ^(2) + 2 bx + c=0 and dx ^(2) + 2 ex + f =0 have a common root, pairs (a,b) of real numbers such that d/a,e/b,f/c are in arithmetic progression.

Let (a_(1),b_(1)) and (a_(2),b_(2)) are the pair of real numbers such that 10,a,b,ab constitute an arithmetic progression. Then, the value of ((2a_(1)a_(2)+b_(1)b_(2))/(10)) is

Let a,b,c , are non-zero real numbers such that (1)/(a),(1)/(b),(1)/(c ) are in arithmetic progression and a,b,-2c , are in geometric progression, then which of the following statements (s) is (are) must be true?

Let the harmonic mean of two positive real numbers a and b be 4, If q is a positive real number such that a, 5, q, b is an arithmetic progression, then the value(s) of |q -a| is (are)

Let three positive numbers a, b c are in geometric progression, such that a, b+8 , c are in arithmetic progression and a, b+8, c+64 are in geometric progression. If the arithmetic mean of a, b, c is k, then (3)/(13)k is equal to

Let a ,b be positive real numbers. If a A_1, A_2, b be are in arithmetic progression a ,G_1, G_2, b are in geometric progression, and a ,H_1, H_2, b are in harmonic progression, show that (G_1G_2)/(H_1H_2)=(A_1+A_2)/(H_1+H_2)=((2a+b)(a+2b))/(9a b)

Let a ,b be positive real numbers. If a, A_1, A_2, b be are in arithmetic progression a ,G_1, G_2, b are in geometric progression, and a ,H_1, H_2, b are in harmonic progression, show that (G_1G_2)/(H_1H_2)=(A_1+A_2)/(H_1+H_2)

The number of positive integral ordered pairs of (a ,b) such that 6,a ,b are in harmonic progression is _________.

Three numbers a, b and c are in geometric progression. If 4a, 5b and 4c are in arithmetic progression and a+b+c=70 , then the value of |c-a| is equal to

If 2, 7, 9 and 5 are subtraced respectively from four numbers in geometric progression, then the resulting numbers are in arithmetic progression. The smallest of the four numbers is

RESONANCE ENGLISH-DPP-QUESTION
  1. In an A.P. the third term is four times the first term, and the sixth ...

    Text Solution

    |

  2. The sum of three numbers in A.P. is 27, and their product is 504, find...

    Text Solution

    |

  3. Determine all pairs (a,b) of real numbers such that 10, a,b,ab are in ...

    Text Solution

    |

  4. Draw the graph of (i) y = |x+2| + |x-3| . (ii) y = x+(x)/(|x|)

    Text Solution

    |

  5. |(2x+1)/(x-1)| gt 2

    Text Solution

    |

  6. |x-1|+|x-2|+|x-3| ge 6

    Text Solution

    |

  7. Solve log(2)|x| lt 3

    Text Solution

    |

  8. |log(3) x| lt 2

    Text Solution

    |

  9. Draw the graph of function y = |2-|x-2||.

    Text Solution

    |

  10. Make the following expressions free from modulus sign : (i) |x^(2) -...

    Text Solution

    |

  11. Consider the equation p = 5-2q - 3 Greatest sat of all possible valu...

    Text Solution

    |

  12. Consider the equation p = 5-2q - 3 If p = 4 then possible values of ...

    Text Solution

    |

  13. Consider the equation p = 5-2q - 3 If p = |r| + 5, then number of po...

    Text Solution

    |

  14. Total number of values of ' x ' satisfying the equation, 2^(cos^2x-1)=...

    Text Solution

    |

  15. If P=cospi/(20)dotcos(3pi)/(20)dotcos(7pi)/(20)dotcos(9pi)/(20)&Q=cosp...

    Text Solution

    |

  16. tan^2 (pi/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7pi...

    Text Solution

    |

  17. Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

    Text Solution

    |

  18. Draw the graph of y=|x^(2)-3|x|+2|.

    Text Solution

    |

  19. The sum sum(m)^(i=0) ({:(10),(i):})({:(20),(m-i):}), (where ({:(p),(q)...

    Text Solution

    |

  20. Co-efficient of alpha^t in thet expansion of (alpha+p)^(m-1)+(alpha+...

    Text Solution

    |