Home
Class 12
MATHS
Total number of values of ' x ' satisfyi...

Total number of values of `' x '` satisfying the equation, `2^(cos^2x-1)=3. 2^(cos^2x)-4` and the inequality `x^2lt=30` is: 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2^{\cos^2 x - 1} = 3 \cdot 2^{\cos^2 x} - 4 \) and the inequality \( x^2 \leq 30 \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ 2^{\cos^2 x - 1} = 3 \cdot 2^{\cos^2 x} - 4 \] We can rewrite \( 2^{\cos^2 x - 1} \) as: \[ \frac{2^{\cos^2 x}}{2} = 3 \cdot 2^{\cos^2 x} - 4 \] Multiplying both sides by 2 gives: \[ 2^{\cos^2 x} = 6 \cdot 2^{\cos^2 x} - 8 \] ### Step 2: Rearranging the Equation Rearranging the equation, we have: \[ 2^{\cos^2 x} - 6 \cdot 2^{\cos^2 x} + 8 = 0 \] This simplifies to: \[ -5 \cdot 2^{\cos^2 x} + 8 = 0 \] or \[ 5 \cdot 2^{\cos^2 x} = 8 \] ### Step 3: Solve for \( 2^{\cos^2 x} \) Dividing both sides by 5: \[ 2^{\cos^2 x} = \frac{8}{5} \] ### Step 4: Take Logarithm Taking logarithm base 2 on both sides: \[ \cos^2 x = \log_2\left(\frac{8}{5}\right) \] ### Step 5: Determine the Range of \( \cos^2 x \) Since \( \cos^2 x \) must be between 0 and 1, we need to check if \( \log_2\left(\frac{8}{5}\right) \) is within this range. Calculating \( \log_2\left(\frac{8}{5}\right) \): \[ \log_2\left(\frac{8}{5}\right) = \log_2(8) - \log_2(5) = 3 - \log_2(5) \] Since \( \log_2(5) \) is approximately 2.32, we find: \[ 3 - 2.32 \approx 0.68 \] Thus, \( \cos^2 x \approx 0.68 \), which is valid since it lies between 0 and 1. ### Step 6: Find \( x \) Now we have: \[ \cos^2 x = \log_2\left(\frac{8}{5}\right) \] This gives: \[ \cos x = \pm \sqrt{\log_2\left(\frac{8}{5}\right)} \] The general solutions for \( x \) are: \[ x = \pm \cos^{-1}\left(\sqrt{\log_2\left(\frac{8}{5}\right)}\right) + 2n\pi \quad \text{and} \quad x = \pm \cos^{-1}\left(-\sqrt{\log_2\left(\frac{8}{5}\right)}\right) + 2n\pi \] ### Step 7: Apply the Inequality Next, we apply the inequality \( x^2 \leq 30 \): \[ -\sqrt{30} \leq x \leq \sqrt{30} \] Calculating \( \sqrt{30} \approx 5.48 \). ### Step 8: Determine Valid Values of \( x \) The values of \( x \) that satisfy \( x = n\pi \) within the interval \( [-\sqrt{30}, \sqrt{30}] \): - \( n = 0 \) gives \( x = 0 \) - \( n = 1 \) gives \( x = \pi \approx 3.14 \) - \( n = -1 \) gives \( x = -\pi \approx -3.14 \) The values \( 0, \pi, -\pi \) are valid solutions. ### Conclusion Thus, the total number of values of \( x \) satisfying the equation and the inequality is **3**.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Number of values of x in(-2pi,2pi) satisfying the equation 2^(sin^(2)x) +4. 2^(cos^(2)x) = 6 is

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

Samllest positive angle satisfying the equation cos^(2)x+cos^(2) 2x+cos^(2)3x=1 , is

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

Least integral value of x satisfying the inequation (x^(2)+1)lt(x+2)^(2)lt2xx^(2)+4x-12is

Number of integers satisfying the inequation (x^2-x-1)(x^2-x-7)<-5, are 4 (b) 2 (c) 1 (d) 0

The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+|cos2x|=|siny| is 3 (b) 4 (c) 5 (d) 6

The number of values of yin[-2pi,2pi] satisfying the equation |sin2x|+|cos2x|=|siny| is 3 (b) 4 (c) 5 (d) 6

Number of intergral value of x satisfying the inequality (x^(2) + 6x - 7)/(|x + 4|) lt 0 is :

RESONANCE ENGLISH-DPP-QUESTION
  1. Consider the equation p = 5-2q - 3 If p = 4 then possible values of ...

    Text Solution

    |

  2. Consider the equation p = 5-2q - 3 If p = |r| + 5, then number of po...

    Text Solution

    |

  3. Total number of values of ' x ' satisfying the equation, 2^(cos^2x-1)=...

    Text Solution

    |

  4. If P=cospi/(20)dotcos(3pi)/(20)dotcos(7pi)/(20)dotcos(9pi)/(20)&Q=cosp...

    Text Solution

    |

  5. tan^2 (pi/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7pi...

    Text Solution

    |

  6. Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

    Text Solution

    |

  7. Draw the graph of y=|x^(2)-3|x|+2|.

    Text Solution

    |

  8. The sum sum(m)^(i=0) ({:(10),(i):})({:(20),(m-i):}), (where ({:(p),(q)...

    Text Solution

    |

  9. Co-efficient of alpha^t in thet expansion of (alpha+p)^(m-1)+(alpha+...

    Text Solution

    |

  10. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  11. The term independent of x in the expansion of (x-1/x)^4(x+1/x)^3...

    Text Solution

    |

  12. Thr ciefficient of x^(n-2) in the polynomial (x-1)(x-2)(x-3)"…."(x-n),...

    Text Solution

    |

  13. If alpha, beta are the roots of the equation x^(2)+alphax + beta = 0 s...

    Text Solution

    |

  14. Find the product of the real roots of the equation, x^2+18x +30=2sqrt(...

    Text Solution

    |

  15. Consider the equation: 2^(|x+1|)-2^x=|2^x-1|+1 The least value of x s...

    Text Solution

    |

  16. Consider the equation: 2^(|x+1|)-2^x=|2^x-1|+1 Number of integers les...

    Text Solution

    |

  17. Consider the equation: 2^(|x+1|)-2^x=|2^x-1|+1 Number of composite nu...

    Text Solution

    |

  18. The remainder lfloor1+lfloor2+lfloor3+"……"+lfloor200 is divided by 14 ...

    Text Solution

    |

  19. Solve the equation 2^(|x+1|)-2^(x)=|2^(x)-1|+1

    Text Solution

    |

  20. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |