Home
Class 12
MATHS
Co-efficient of alpha^t in thet expansi...

Co-efficient of `alpha^t` in thet expansion of `(alpha+p)^(m-1)+(alpha+p)^(m-2)(alpha+q)+(alpha+p)^(m-3)(alpha+q)^2+dot(alpha+q)^(m-1)` where `alpha != -q and p !=q` is :

A

`(.^(m)C_(t)(p^(t) - q^(t)))/(p-q)`

B

`(.^(m)C_(t)(p^(m-t) - q^(m-t)))/(p-q)`

C

`(.^(m)C_(t)(p^(t) - q^(t)))/(p-q)`

D

`(.^(m)C_(t)(p^(m-t) + q^(m-t)))/(p-q)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( \alpha^t \) in the expansion of \[ S = ( \alpha + p)^{m-1} + ( \alpha + p)^{m-2} ( \alpha + q) + ( \alpha + p)^{m-3} ( \alpha + q)^2 + \ldots + ( \alpha + q)^{m-1}, \] we can follow these steps: ### Step 1: Identify the series We can rewrite the series \( S \) as a sum of terms where each term is of the form \( ( \alpha + p)^{m-k} ( \alpha + q)^{k} \) for \( k = 0, 1, 2, \ldots, m-1 \). ### Step 2: Express \( S \) as a geometric series The series can be recognized as a geometric series with: - First term \( A = ( \alpha + p)^{m-1} \) - Common ratio \( R = \frac{ \alpha + q}{ \alpha + p} \) - Number of terms \( n = m \) ### Step 3: Use the formula for the sum of a geometric series The sum of a geometric series is given by: \[ S_n = A \frac{1 - R^n}{1 - R} \] Substituting our values, we have: \[ S = ( \alpha + p)^{m-1} \frac{1 - \left( \frac{ \alpha + q}{ \alpha + p} \right)^m}{1 - \frac{ \alpha + q}{ \alpha + p}} \] ### Step 4: Simplify the expression We simplify the denominator: \[ 1 - \frac{ \alpha + q}{ \alpha + p} = \frac{( \alpha + p) - ( \alpha + q)}{ \alpha + p} = \frac{p - q}{ \alpha + p} \] Thus, we can rewrite \( S \): \[ S = ( \alpha + p)^{m-1} \cdot \frac{( \alpha + p)^m - ( \alpha + q)^m}{p - q} \] ### Step 5: Expand using the binomial theorem Now, we need to find the coefficient of \( \alpha^t \) in the expression: \[ S = \frac{( \alpha + p)^{m} - ( \alpha + q)^{m}}{p - q} \] Using the binomial theorem, we can expand both \( ( \alpha + p)^{m} \) and \( ( \alpha + q)^{m} \): \[ ( \alpha + p)^{m} = \sum_{t=0}^{m} \binom{m}{t} \alpha^t p^{m-t} \] \[ ( \alpha + q)^{m} = \sum_{t=0}^{m} \binom{m}{t} \alpha^t q^{m-t} \] ### Step 6: Combine the expansions The coefficient of \( \alpha^t \) in \( S \) can be found by subtracting the coefficients from the two expansions: \[ \text{Coefficient of } \alpha^t = \frac{1}{p - q} \left( \binom{m}{t} p^{m-t} - \binom{m}{t} q^{m-t} \right) \] ### Step 7: Final expression Thus, we have: \[ \text{Coefficient of } \alpha^t = \frac{\binom{m}{t} (p^{m-t} - q^{m-t})}{p - q} \] ### Conclusion The coefficient of \( \alpha^t \) in the given expansion is: \[ \frac{\binom{m}{t} (p^{m-t} - q^{m-t})}{p - q} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

Find the coefficient of alpha^(6) in the product (1+alpha+alpha^(2))(1+alpha+alpha^(2))(1+alpha+alpha^(2)+alpha^(3)) (1+alpha)(1+alpha)(1+alpha) .

If alpha is complex fifth root of unity and (1+alpha +alpha^(2)+ alpha^(3))^(2005) = p + qalpha + ralpha^(2) + salpha^(3) (where p,q,r,s are real), then find the value of p+ q+r+s .

If alpha=\ \ ^m C_2,\ then find the value of \ ^(alpha)C_2dot

If p sin^(3)alpha+qcos^(3)alpha=sinalphacosalpha and p sinalpha - q cos alpha=0, then prove that : p^(2)+q^(2)=1

Suppose a sample space S consists of 4 elements, i.e., S={alpha_1, alpha_2, alpha_3, alpha_4} " where " alpha_1, alpha_2, alpha_3, alpha_4 are pair wise mutually exclusive. Which function defines a probability function on S? (1) P(alpha_1)=1/2, P(alpha_2)=1/3, P(alpha_3)=1/4, P(alpha_4)=1/4 (2) P(alpha_1)=1/4, P(alpha_2)=-1/2, P(alpha_3)=7/9, P(alpha_4)=1/3 (3) P(alpha_1)=1/2, P(alpha_2)=1/4, P(alpha_3)=1/8, P(alpha_4)=1/8 (4) P(alpha_1)=1/2, P(alpha_2)=1/4, P(alpha_3)=1/8, P(alpha_4)=0

If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3alpha sin^3alpha = n then (m + n)^(2/3) + (m-n)^(2/3)

If cos (theta - alpha),cos(theta),Cos(theta + alpha) are in H.P. and cos alpha ne 1 , then angle alpha lie in the

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

If p(x), q(x), r(x) be polynomials of degree one and alpha, beta, gamma are real nubers then |(p(alpha), p(beta), p(gamma)),(q(alpha), q(beta), q(gamma)), (r(alpha), r(beta), r(gamma))| (A) independent of alpha (B) independent of beta (C) independent gamma (D) independent of all alpha,beta and gamma

("lim")_(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n (when alpha in Q ) is equal to (a) e^(-alpha) (b) -alpha (c) e^(1-alpha) (d) e^(1+alpha)

RESONANCE ENGLISH-DPP-QUESTION
  1. Draw the graph of y=|x^(2)-3|x|+2|.

    Text Solution

    |

  2. The sum sum(m)^(i=0) ({:(10),(i):})({:(20),(m-i):}), (where ({:(p),(q)...

    Text Solution

    |

  3. Co-efficient of alpha^t in thet expansion of (alpha+p)^(m-1)+(alpha+...

    Text Solution

    |

  4. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  5. The term independent of x in the expansion of (x-1/x)^4(x+1/x)^3...

    Text Solution

    |

  6. Thr ciefficient of x^(n-2) in the polynomial (x-1)(x-2)(x-3)"…."(x-n),...

    Text Solution

    |

  7. If alpha, beta are the roots of the equation x^(2)+alphax + beta = 0 s...

    Text Solution

    |

  8. Find the product of the real roots of the equation, x^2+18x +30=2sqrt(...

    Text Solution

    |

  9. Consider the equation: 2^(|x+1|)-2^x=|2^x-1|+1 The least value of x s...

    Text Solution

    |

  10. Consider the equation: 2^(|x+1|)-2^x=|2^x-1|+1 Number of integers les...

    Text Solution

    |

  11. Consider the equation: 2^(|x+1|)-2^x=|2^x-1|+1 Number of composite nu...

    Text Solution

    |

  12. The remainder lfloor1+lfloor2+lfloor3+"……"+lfloor200 is divided by 14 ...

    Text Solution

    |

  13. Solve the equation 2^(|x+1|)-2^(x)=|2^(x)-1|+1

    Text Solution

    |

  14. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  15. If n^(th) term of the series 3'1/3,2,1'3/7,1'1/9,"……" is (an+10)/(bn+c...

    Text Solution

    |

  16. If sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2)+1/(3^2))+sqrt(1+1/(3^2)+1/(4...

    Text Solution

    |

  17. In the expansion of (7^((1)/(3)) + 11^((1)/(9)))^(6561) , the number o...

    Text Solution

    |

  18. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  19. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  20. Prove that difference of squares of two distinct odd natural numbers i...

    Text Solution

    |