Home
Class 12
MATHS
If sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2...

If `sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2)+1/(3^2))+sqrt(1+1/(3^2)+1/(4^2))++sqrt(1+1/((1999)^2)+1/(2000)^2)+=1/x ,`Find x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + \ldots + \sqrt{1 + \frac{1}{1999^2} + \frac{1}{2000^2}} = \frac{1}{x} \] ### Step 1: Simplify Each Term Let's denote the general term as: \[ T_r = \sqrt{1 + \frac{1}{r^2} + \frac{1}{(r+1)^2}} \] We will simplify \(T_r\): \[ T_r = \sqrt{1 + \frac{1}{r^2} + \frac{1}{(r+1)^2}} = \sqrt{1 + \frac{(r+1)^2 + r^2}{r^2(r+1)^2}} \] ### Step 2: Find a Common Denominator The common denominator for the fractions inside the square root is \(r^2(r+1)^2\): \[ T_r = \sqrt{1 + \frac{(r^2 + 2r + 1 + r^2)}{r^2(r+1)^2}} = \sqrt{1 + \frac{2r^2 + 2r + 1}{r^2(r+1)^2}} \] ### Step 3: Combine Terms Now, we can express \(T_r\) as: \[ T_r = \sqrt{\frac{r^2(r+1)^2 + 2r^2 + 2r + 1}{r^2(r+1)^2}} = \sqrt{\frac{(r^2 + r + 1)^2}{r^2(r+1)^2}} \] ### Step 4: Simplify Further Taking the square root: \[ T_r = \frac{r^2 + r + 1}{r(r+1)} \] ### Step 5: Rewrite the Sum Now we need to sum \(T_r\) from \(r = 1\) to \(1999\): \[ \sum_{r=1}^{1999} T_r = \sum_{r=1}^{1999} \frac{r^2 + r + 1}{r(r+1)} \] ### Step 6: Break Down the Fraction We can break down the fraction: \[ \frac{r^2 + r + 1}{r(r+1)} = \frac{1}{r} + \frac{1}{r+1} + \frac{1}{r(r+1)} \] ### Step 7: Evaluate the Sum Now, we can evaluate the sum: \[ \sum_{r=1}^{1999} \left( \frac{1}{r} + \frac{1}{r+1} + \frac{1}{r(r+1)} \right) \] The first two sums will telescope, and the last term can be evaluated separately. ### Step 8: Calculate the Total The telescoping nature will lead to: \[ \sum_{r=1}^{1999} \left( \frac{1}{r} + \frac{1}{r+1} \right) = 2 + \frac{1}{2000} - 1 = 1999 + \frac{1}{2000} \] ### Step 9: Set Equal to \(\frac{1}{x}\) Now we have: \[ \sum_{r=1}^{1999} T_r = 2000 - \frac{1}{2000} = \frac{2000^2 - 1}{2000} \] Setting this equal to \(\frac{1}{x}\): \[ \frac{2000^2 - 1}{2000} = \frac{1}{x} \] ### Step 10: Solve for \(x\) Cross-multiplying gives: \[ 2000^2 - 1 = \frac{2000}{x} \] Thus, \[ x = \frac{2000}{2000^2 - 1} \] ### Final Answer The value of \(x\) is: \[ x = \frac{2000}{2000^2 - 1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

RESONANCE ENGLISH-DPP-QUESTION
  1. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  2. If n^(th) term of the series 3'1/3,2,1'3/7,1'1/9,"……" is (an+10)/(bn+c...

    Text Solution

    |

  3. If sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2)+1/(3^2))+sqrt(1+1/(3^2)+1/(4...

    Text Solution

    |

  4. In the expansion of (7^((1)/(3)) + 11^((1)/(9)))^(6561) , the number o...

    Text Solution

    |

  5. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  6. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  7. Prove that difference of squares of two distinct odd natural numbers i...

    Text Solution

    |

  8. If Pa n dQ are sum and product respectively of all real values of x sa...

    Text Solution

    |

  9. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sin x -s...

    Text Solution

    |

  10. The values of x satisfying 2log((1)/(4))(x+5)gt(9)/(4)log((1)/(3sqrt(3...

    Text Solution

    |

  11. The simultaneous equations, y=x+2|x| & y=4+x-|x| have the solution se...

    Text Solution

    |

  12. The number of times the digit 3 will be written when listing the integ...

    Text Solution

    |

  13. If m denotes the number of 5 digit numbers if each successive digits a...

    Text Solution

    |

  14. Number of four digit positive integers if the product of their digits ...

    Text Solution

    |

  15. Let the co-efficients of x^n In (1+x)^(2n) and (1+x)^(2n-1) be P & ...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. The value of m , for which the coefficients of the (2m+1) th terms in ...

    Text Solution

    |

  18. STATEMENT - 1 : If n is even, .^(2n)C(1)+.^(2n)C(3)+.^(2n)C(5)+"….."+....

    Text Solution

    |

  19. For some natural number N, the number of positive integral 'x' satis...

    Text Solution

    |

  20. Find the sum of the last 30 coefficients in the expansion of (1+x)^(59...

    Text Solution

    |