Home
Class 12
MATHS
The simultaneous equations, y=x+2|x| & ...

The simultaneous equations, `y=x+2|x| & y=4+x-|x|` have the solution set given by: (a) `(4/3,4/3)` b) `(4,4/3)` (c) `(-4/3,4/3)` (d) `(4/3,4)`

A

`(4/3,4/3)`

B

`(4,4/3)`

C

`(-4/3,4/3)`

D

`(4/3,4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the simultaneous equations \( y = x + 2|x| \) and \( y = 4 + x - |x| \), we will consider two cases based on the definition of the absolute value function. ### Step 1: Identify Cases for Absolute Value The absolute value function \( |x| \) can be defined as: - \( |x| = x \) when \( x \geq 0 \) - \( |x| = -x \) when \( x < 0 \) ### Step 2: Case 1: \( x \geq 0 \) In this case, we can rewrite the equations: 1. \( y = x + 2|x| = x + 2x = 3x \) 2. \( y = 4 + x - |x| = 4 + x - x = 4 \) Now we set the two expressions for \( y \) equal to each other: \[ 3x = 4 \] Solving for \( x \): \[ x = \frac{4}{3} \] Substituting \( x \) back into either equation to find \( y \): \[ y = 3x = 3 \times \frac{4}{3} = 4 \] Thus, for \( x \geq 0 \), we have the solution: \[ \left( \frac{4}{3}, 4 \right) \] ### Step 3: Case 2: \( x < 0 \) In this case, we rewrite the equations: 1. \( y = x + 2|x| = x + 2(-x) = x - 2x = -x \) 2. \( y = 4 + x - |x| = 4 + x - (-x) = 4 + x + x = 4 + 2x \) Now we set the two expressions for \( y \) equal to each other: \[ -x = 4 + 2x \] Rearranging gives: \[ -x - 2x = 4 \implies -3x = 4 \implies x = -\frac{4}{3} \] Substituting \( x \) back into either equation to find \( y \): \[ y = -x = -\left(-\frac{4}{3}\right) = \frac{4}{3} \] Thus, for \( x < 0 \), we have the solution: \[ \left(-\frac{4}{3}, \frac{4}{3}\right) \] ### Step 4: Summary of Solutions The solutions we found are: 1. \( \left( \frac{4}{3}, 4 \right) \) 2. \( \left(-\frac{4}{3}, \frac{4}{3}\right) \) ### Step 5: Identify Correct Options From the given options: - (a) \( \left( \frac{4}{3}, \frac{4}{3} \right) \) - (b) \( (4, \frac{4}{3}) \) - (c) \( \left(-\frac{4}{3}, \frac{4}{3}\right) \) - (d) \( \left( \frac{4}{3}, 4 \right) \) The correct solutions are: - \( \left( \frac{4}{3}, 4 \right) \) matches option (d) - \( \left(-\frac{4}{3}, \frac{4}{3}\right) \) matches option (c) ### Final Answer The solution set includes: - \( \left( \frac{4}{3}, 4 \right) \) (option d) - \( \left(-\frac{4}{3}, \frac{4}{3}\right) \) (option c)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

If x/2+1/3=1, then x= (a) 3/4 (b) 4/3 (c) -3/4 (d) (-4)/3

If the equation sin^4x-(k+2)sin^2x=(k+3) has a solution then ' k ' must lie in the interval: a. (-4,-2) b. [-3,2) c. (-4,-3) d. [-3,-2]

The solution set of the inequality (3^x-4^x)/(x^2-3x-4)geq0 is

If (x+2)/(x-2)=2/3 (a) -10\ (b) 10 (c) 4/3 (d) -4/3

If 2x-3/2=5x+3/4, then x= (a) 3/4 (b) -3/4 (c) 4/3 (d) -4/3

If (4, 19) is a solution of the equation y=a x+3,\ then a= (a) 3 (b) 4 (c) 5 (d) 6

If 2x+5/3=1/4x+4, then x= (a)3 (b) 4 (c) 3/4 (d) 4/3

Let f: R-{-4/3}->R be a function as f(x)=(4x)/(3x+4) . The inverse of f is map, g:" Range "f->R-{-4/3} given by.(a) g(y)=(3y)/(3-4y) (b) g(y)=(4y)/(4-3y) (c) g(y)=(4y)/(3-4y) (d) g(y)=(3y)/(4-3y)

The equations of the sided of a triangle are x+y-5=0,x-y+1=0, and x+y-sqrt(2)=0 is (-oo,-4/3)uu(4/3,+oo) (-4/3,4/3) (c) (-3/4,4/3) none of these

Let y(x) be the solution of the differential equation (dy)/(dx)+(3y)/(cos^2x)=1/(cos^2x) and y(pi/4)=4/3 then vaue of y(-pi/4) is equal to (a) -4/3 (b) 1/3 (c) e^6+1/3 (d) 3

RESONANCE ENGLISH-DPP-QUESTION
  1. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sin x -s...

    Text Solution

    |

  2. The values of x satisfying 2log((1)/(4))(x+5)gt(9)/(4)log((1)/(3sqrt(3...

    Text Solution

    |

  3. The simultaneous equations, y=x+2|x| & y=4+x-|x| have the solution se...

    Text Solution

    |

  4. The number of times the digit 3 will be written when listing the integ...

    Text Solution

    |

  5. If m denotes the number of 5 digit numbers if each successive digits a...

    Text Solution

    |

  6. Number of four digit positive integers if the product of their digits ...

    Text Solution

    |

  7. Let the co-efficients of x^n In (1+x)^(2n) and (1+x)^(2n-1) be P & ...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. The value of m , for which the coefficients of the (2m+1) th terms in ...

    Text Solution

    |

  10. STATEMENT - 1 : If n is even, .^(2n)C(1)+.^(2n)C(3)+.^(2n)C(5)+"….."+....

    Text Solution

    |

  11. For some natural number N, the number of positive integral 'x' satis...

    Text Solution

    |

  12. Find the sum of the last 30 coefficients in the expansion of (1+x)^(59...

    Text Solution

    |

  13. Coefficient of x^(48) in sum(r=0)^(50)""^(50)C(r).(x-2)^(x).3^(50-r) i...

    Text Solution

    |

  14. Solve the following equations : (i) |x-2| = sqrt(x-4) , (ii) (|x-2|)...

    Text Solution

    |

  15. |x^(2)-4x+4|ge 1

    Text Solution

    |

  16. Solve the following inequation (i) (3)/(x-2) lt 1 , (ii) (2x-1)/(x^(...

    Text Solution

    |

  17. If sum(i=1)^(7) i^(2)x(i) = 1 and sum(i=1)^(7)(i+1)^(2) x(i) = 12 and ...

    Text Solution

    |

  18. Circles with centres P,Q& S are touching each other externally as show...

    Text Solution

    |

  19. Let P = underset(r=1)overset(50)sum(.^(50+r)C(r)(2r-1))/(.^(50)C(r)(50...

    Text Solution

    |

  20. Let P = underset(r=1)overset(50)sum(.^(50+r)C(r)(2r-1))/(.^(50)C(r)(50...

    Text Solution

    |